| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0val | Structured version Visualization version GIF version | ||
| Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovn0val.1 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m ∅)) |
| Ref | Expression |
|---|---|
| ovn0val | ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi 8990 | . . . 4 ⊢ ∅ ∈ Fin | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ Fin) |
| 3 | ovn0val.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m ∅)) | |
| 4 | eqid 2729 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 5 | 2, 3, 4 | ovnval2 46516 | . 2 ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ))) |
| 6 | eqid 2729 | . . . 4 ⊢ ∅ = ∅ | |
| 7 | iftrue 4490 | . . . 4 ⊢ (∅ = ∅ → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0 |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0) |
| 10 | 5, 9 | eqtrd 2764 | 1 ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ⊆ wss 3911 ∅c0 4292 ifcif 4484 ∪ ciun 4951 ↦ cmpt 5183 × cxp 5629 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Xcixp 8847 Fincfn 8895 infcinf 9368 ℝcr 11043 0cc0 11044 ℝ*cxr 11183 < clt 11184 ℕcn 12162 [,)cico 13284 ∏cprod 15845 volcvol 25340 Σ^csumge0 46333 voln*covoln 46507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-seq 13943 df-prod 15846 df-ovoln 46508 |
| This theorem is referenced by: ovnssle 46532 ovn02 46539 ovnsubadd 46543 ovnhoi 46574 ovnlecvr2 46581 von0val 46642 |
| Copyright terms: Public domain | W3C validator |