| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0val | Structured version Visualization version GIF version | ||
| Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| ovn0val.1 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m ∅)) |
| Ref | Expression |
|---|---|
| ovn0val | ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi 9013 | . . . 4 ⊢ ∅ ∈ Fin | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ Fin) |
| 3 | ovn0val.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m ∅)) | |
| 4 | eqid 2729 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
| 5 | 2, 3, 4 | ovnval2 46543 | . 2 ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ))) |
| 6 | eqid 2729 | . . . 4 ⊢ ∅ = ∅ | |
| 7 | iftrue 4494 | . . . 4 ⊢ (∅ = ∅ → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0 |
| 9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0) |
| 10 | 5, 9 | eqtrd 2764 | 1 ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∅c0 4296 ifcif 4488 ∪ ciun 4955 ↦ cmpt 5188 × cxp 5636 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Xcixp 8870 Fincfn 8918 infcinf 9392 ℝcr 11067 0cc0 11068 ℝ*cxr 11207 < clt 11208 ℕcn 12186 [,)cico 13308 ∏cprod 15869 volcvol 25364 Σ^csumge0 46360 voln*covoln 46534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-seq 13967 df-prod 15870 df-ovoln 46535 |
| This theorem is referenced by: ovnssle 46559 ovn02 46566 ovnsubadd 46570 ovnhoi 46601 ovnlecvr2 46608 von0val 46669 |
| Copyright terms: Public domain | W3C validator |