Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0val Structured version   Visualization version   GIF version

Theorem ovn0val 46596
Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
ovn0val.1 (𝜑𝐴 ⊆ (ℝ ↑m ∅))
Assertion
Ref Expression
ovn0val (𝜑 → ((voln*‘∅)‘𝐴) = 0)

Proof of Theorem ovn0val
Dummy variables 𝑖 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0fi 8964 . . . 4 ∅ ∈ Fin
21a1i 11 . . 3 (𝜑 → ∅ ∈ Fin)
3 ovn0val.1 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m ∅))
4 eqid 2731 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
52, 3, 4ovnval2 46591 . 2 (𝜑 → ((voln*‘∅)‘𝐴) = if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )))
6 eqid 2731 . . . 4 ∅ = ∅
7 iftrue 4478 . . . 4 (∅ = ∅ → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = 0)
86, 7ax-mp 5 . . 3 if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = 0
98a1i 11 . 2 (𝜑 → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = 0)
105, 9eqtrd 2766 1 (𝜑 → ((voln*‘∅)‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3897  c0 4280  ifcif 4472   ciun 4939  cmpt 5170   × cxp 5612  ccom 5618  cfv 6481  (class class class)co 7346  m cmap 8750  Xcixp 8821  Fincfn 8869  infcinf 9325  cr 11005  0cc0 11006  *cxr 11145   < clt 11146  cn 12125  [,)cico 13247  cprod 15810  volcvol 25391  Σ^csumge0 46408  voln*covoln 46582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-i2m1 11074  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-seq 13909  df-prod 15811  df-ovoln 46583
This theorem is referenced by:  ovnssle  46607  ovn02  46614  ovnsubadd  46618  ovnhoi  46649  ovnlecvr2  46656  von0val  46717
  Copyright terms: Public domain W3C validator