Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovn0val Structured version   Visualization version   GIF version

Theorem ovn0val 46531
Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
ovn0val.1 (𝜑𝐴 ⊆ (ℝ ↑m ∅))
Assertion
Ref Expression
ovn0val (𝜑 → ((voln*‘∅)‘𝐴) = 0)

Proof of Theorem ovn0val
Dummy variables 𝑖 𝑧 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0fi 8967 . . . 4 ∅ ∈ Fin
21a1i 11 . . 3 (𝜑 → ∅ ∈ Fin)
3 ovn0val.1 . . 3 (𝜑𝐴 ⊆ (ℝ ↑m ∅))
4 eqid 2729 . . 3 {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}
52, 3, 4ovnval2 46526 . 2 (𝜑 → ((voln*‘∅)‘𝐴) = if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )))
6 eqid 2729 . . . 4 ∅ = ∅
7 iftrue 4482 . . . 4 (∅ = ∅ → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = 0)
86, 7ax-mp 5 . . 3 if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = 0
98a1i 11 . 2 (𝜑 → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m ∅) ↑m ℕ)(𝐴 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < )) = 0)
105, 9eqtrd 2764 1 (𝜑 → ((voln*‘∅)‘𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  wss 3903  c0 4284  ifcif 4476   ciun 4941  cmpt 5173   × cxp 5617  ccom 5623  cfv 6482  (class class class)co 7349  m cmap 8753  Xcixp 8824  Fincfn 8872  infcinf 9331  cr 11008  0cc0 11009  *cxr 11148   < clt 11149  cn 12128  [,)cico 13250  cprod 15810  volcvol 25362  Σ^csumge0 46343  voln*covoln 46517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-mulcl 11071  ax-i2m1 11077  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-seq 13909  df-prod 15811  df-ovoln 46518
This theorem is referenced by:  ovnssle  46542  ovn02  46549  ovnsubadd  46553  ovnhoi  46584  ovnlecvr2  46591  von0val  46652
  Copyright terms: Public domain W3C validator