![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovn0val | Structured version Visualization version GIF version |
Description: The Lebesgue outer measure (for the zero dimensional space of reals) of every subset is zero. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
ovn0val.1 | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 ∅)) |
Ref | Expression |
---|---|
ovn0val | ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0fin 8476 | . . . 4 ⊢ ∅ ∈ Fin | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ∅ ∈ Fin) |
3 | ovn0val.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 ∅)) | |
4 | eqid 2778 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 ∅) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 ∅) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} | |
5 | 2, 3, 4 | ovnval2 41690 | . 2 ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 ∅) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ))) |
6 | eqid 2778 | . . . 4 ⊢ ∅ = ∅ | |
7 | iftrue 4313 | . . . 4 ⊢ (∅ = ∅ → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 ∅) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 ∅) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0 |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → if(∅ = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑𝑚 ∅) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ ∅ (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ ∅ (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < )) = 0) |
10 | 5, 9 | eqtrd 2814 | 1 ⊢ (𝜑 → ((voln*‘∅)‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 {crab 3094 ⊆ wss 3792 ∅c0 4141 ifcif 4307 ∪ ciun 4753 ↦ cmpt 4965 × cxp 5353 ∘ ccom 5359 ‘cfv 6135 (class class class)co 6922 ↑𝑚 cmap 8140 Xcixp 8194 Fincfn 8241 infcinf 8635 ℝcr 10271 0cc0 10272 ℝ*cxr 10410 < clt 10411 ℕcn 11374 [,)cico 12489 ∏cprod 15038 volcvol 23667 Σ^csumge0 41507 voln*covoln 41681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-mulcl 10334 ax-i2m1 10340 ax-pre-lttri 10346 ax-pre-lttrn 10347 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-seq 13120 df-prod 15039 df-ovoln 41682 |
This theorem is referenced by: ovnssle 41706 ovn02 41713 ovnsubadd 41717 ovnhoi 41748 ovnlecvr2 41755 von0val 41816 |
Copyright terms: Public domain | W3C validator |