MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem7 Structured version   Visualization version   GIF version

Theorem hsmexlem7 9533
Description: Lemma for hsmex 9542. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypothesis
Ref Expression
hsmexlem7.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
Assertion
Ref Expression
hsmexlem7 (𝐻‘∅) = (har‘𝒫 𝑋)
Distinct variable group:   𝑧,𝑋
Allowed substitution hint:   𝐻(𝑧)

Proof of Theorem hsmexlem7
StepHypRef Expression
1 hsmexlem7.h . . 3 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
21fveq1i 6412 . 2 (𝐻‘∅) = ((rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)‘∅)
3 fvex 6424 . . 3 (har‘𝒫 𝑋) ∈ V
4 fr0g 7770 . . 3 ((har‘𝒫 𝑋) ∈ V → ((rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)‘∅) = (har‘𝒫 𝑋))
53, 4ax-mp 5 . 2 ((rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)‘∅) = (har‘𝒫 𝑋)
62, 5eqtri 2821 1 (𝐻‘∅) = (har‘𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  Vcvv 3385  c0 4115  𝒫 cpw 4349  cmpt 4922   × cxp 5310  cres 5314  cfv 6101  ωcom 7299  reccrdg 7744  harchar 8703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-om 7300  df-wrecs 7645  df-recs 7707  df-rdg 7745
This theorem is referenced by:  hsmexlem9  9535  hsmexlem4  9539
  Copyright terms: Public domain W3C validator