| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hsmexlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for hsmex 10326. Properties of the recurrent sequence of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| hsmexlem7.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
| Ref | Expression |
|---|---|
| hsmexlem7 | ⊢ (𝐻‘∅) = (har‘𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hsmexlem7.h | . . 3 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (𝐻‘∅) = ((rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)‘∅) |
| 3 | fvex 6835 | . . 3 ⊢ (har‘𝒫 𝑋) ∈ V | |
| 4 | fr0g 8358 | . . 3 ⊢ ((har‘𝒫 𝑋) ∈ V → ((rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)‘∅) = (har‘𝒫 𝑋)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)‘∅) = (har‘𝒫 𝑋) |
| 6 | 2, 5 | eqtri 2752 | 1 ⊢ (𝐻‘∅) = (har‘𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 𝒫 cpw 4551 ↦ cmpt 5173 × cxp 5617 ↾ cres 5621 ‘cfv 6482 ωcom 7799 reccrdg 8331 harchar 9448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 |
| This theorem is referenced by: hsmexlem9 10319 hsmexlem4 10323 |
| Copyright terms: Public domain | W3C validator |