Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoif Structured version   Visualization version   GIF version

Theorem hsphoif 46620
Description: 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoif.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
hsphoif.a (𝜑𝐴 ∈ ℝ)
hsphoif.x (𝜑𝑋𝑉)
hsphoif.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoif (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑥   𝐵,𝑎,𝑗   𝑋,𝑎,𝑗,𝑥   𝑌,𝑎,𝑥   𝜑,𝑎,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑎)   𝑉(𝑥,𝑗,𝑎)   𝑌(𝑗)

Proof of Theorem hsphoif
StepHypRef Expression
1 hsphoif.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
21ffvelcdmda 7017 . . . 4 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
3 hsphoif.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑗𝑋) → 𝐴 ∈ ℝ)
52, 4ifcld 4522 . . . 4 ((𝜑𝑗𝑋) → if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴) ∈ ℝ)
62, 5ifcld 4522 . . 3 ((𝜑𝑗𝑋) → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) ∈ ℝ)
7 eqid 2731 . . 3 (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
86, 7fmptd 7047 . 2 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ)
9 hsphoif.h . . . . 5 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
10 breq2 5095 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑎𝑗) ≤ 𝑥 ↔ (𝑎𝑗) ≤ 𝐴))
11 id 22 . . . . . . . . 9 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11ifbieq2d 4502 . . . . . . . 8 (𝑥 = 𝐴 → if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥) = if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))
1312ifeq2d 4496 . . . . . . 7 (𝑥 = 𝐴 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)) = if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))
1413mpteq2dv 5185 . . . . . 6 (𝑥 = 𝐴 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))))
1514mpteq2dv 5185 . . . . 5 (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
16 ovex 7379 . . . . . . 7 (ℝ ↑m 𝑋) ∈ V
1716mptex 7157 . . . . . 6 (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V
1817a1i 11 . . . . 5 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V)
199, 15, 3, 18fvmptd3 6952 . . . 4 (𝜑 → (𝐻𝐴) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
20 fveq1 6821 . . . . . . 7 (𝑎 = 𝐵 → (𝑎𝑗) = (𝐵𝑗))
2120breq1d 5101 . . . . . . . 8 (𝑎 = 𝐵 → ((𝑎𝑗) ≤ 𝐴 ↔ (𝐵𝑗) ≤ 𝐴))
2221, 20ifbieq1d 4500 . . . . . . 7 (𝑎 = 𝐵 → if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴) = if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))
2320, 22ifeq12d 4497 . . . . . 6 (𝑎 = 𝐵 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)) = if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
2423mpteq2dv 5185 . . . . 5 (𝑎 = 𝐵 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
2524adantl 481 . . . 4 ((𝜑𝑎 = 𝐵) → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
26 reex 11097 . . . . . . . 8 ℝ ∈ V
2726a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
28 hsphoif.x . . . . . . 7 (𝜑𝑋𝑉)
2927, 28jca 511 . . . . . 6 (𝜑 → (ℝ ∈ V ∧ 𝑋𝑉))
30 elmapg 8763 . . . . . 6 ((ℝ ∈ V ∧ 𝑋𝑉) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3129, 30syl 17 . . . . 5 (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
321, 31mpbird 257 . . . 4 (𝜑𝐵 ∈ (ℝ ↑m 𝑋))
33 mptexg 7155 . . . . 5 (𝑋𝑉 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3428, 33syl 17 . . . 4 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3519, 25, 32, 34fvmptd 6936 . . 3 (𝜑 → ((𝐻𝐴)‘𝐵) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
3635feq1d 6633 . 2 (𝜑 → (((𝐻𝐴)‘𝐵):𝑋⟶ℝ ↔ (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ))
378, 36mpbird 257 1 (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4475   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cr 11005  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752
This theorem is referenced by:  hsphoidmvle2  46629  hsphoidmvle  46630  sge0hsphoire  46633  hoidmvlelem1  46639  hoidmvlelem2  46640  hoidmvlelem4  46642  hspmbllem1  46670  hspmbllem2  46671
  Copyright terms: Public domain W3C validator