Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoif Structured version   Visualization version   GIF version

Theorem hsphoif 44073
Description: 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoif.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
hsphoif.a (𝜑𝐴 ∈ ℝ)
hsphoif.x (𝜑𝑋𝑉)
hsphoif.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoif (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑥   𝐵,𝑎,𝑗   𝑋,𝑎,𝑗,𝑥   𝑌,𝑎,𝑥   𝜑,𝑎,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑎)   𝑉(𝑥,𝑗,𝑎)   𝑌(𝑗)

Proof of Theorem hsphoif
StepHypRef Expression
1 hsphoif.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
21ffvelrnda 6954 . . . 4 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
3 hsphoif.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
43adantr 481 . . . . 5 ((𝜑𝑗𝑋) → 𝐴 ∈ ℝ)
52, 4ifcld 4506 . . . 4 ((𝜑𝑗𝑋) → if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴) ∈ ℝ)
62, 5ifcld 4506 . . 3 ((𝜑𝑗𝑋) → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) ∈ ℝ)
7 eqid 2738 . . 3 (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
86, 7fmptd 6981 . 2 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ)
9 hsphoif.h . . . . 5 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
10 breq2 5078 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑎𝑗) ≤ 𝑥 ↔ (𝑎𝑗) ≤ 𝐴))
11 id 22 . . . . . . . . 9 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11ifbieq2d 4486 . . . . . . . 8 (𝑥 = 𝐴 → if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥) = if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))
1312ifeq2d 4480 . . . . . . 7 (𝑥 = 𝐴 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)) = if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))
1413mpteq2dv 5176 . . . . . 6 (𝑥 = 𝐴 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))))
1514mpteq2dv 5176 . . . . 5 (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
16 ovex 7301 . . . . . . 7 (ℝ ↑m 𝑋) ∈ V
1716mptex 7092 . . . . . 6 (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V
1817a1i 11 . . . . 5 (𝜑 → (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V)
199, 15, 3, 18fvmptd3 6891 . . . 4 (𝜑 → (𝐻𝐴) = (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
20 fveq1 6766 . . . . . . 7 (𝑎 = 𝐵 → (𝑎𝑗) = (𝐵𝑗))
2120breq1d 5084 . . . . . . . 8 (𝑎 = 𝐵 → ((𝑎𝑗) ≤ 𝐴 ↔ (𝐵𝑗) ≤ 𝐴))
2221, 20ifbieq1d 4484 . . . . . . 7 (𝑎 = 𝐵 → if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴) = if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))
2320, 22ifeq12d 4481 . . . . . 6 (𝑎 = 𝐵 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)) = if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
2423mpteq2dv 5176 . . . . 5 (𝑎 = 𝐵 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
2524adantl 482 . . . 4 ((𝜑𝑎 = 𝐵) → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
26 reex 10950 . . . . . . . 8 ℝ ∈ V
2726a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
28 hsphoif.x . . . . . . 7 (𝜑𝑋𝑉)
2927, 28jca 512 . . . . . 6 (𝜑 → (ℝ ∈ V ∧ 𝑋𝑉))
30 elmapg 8616 . . . . . 6 ((ℝ ∈ V ∧ 𝑋𝑉) → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3129, 30syl 17 . . . . 5 (𝜑 → (𝐵 ∈ (ℝ ↑m 𝑋) ↔ 𝐵:𝑋⟶ℝ))
321, 31mpbird 256 . . . 4 (𝜑𝐵 ∈ (ℝ ↑m 𝑋))
33 mptexg 7090 . . . . 5 (𝑋𝑉 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3428, 33syl 17 . . . 4 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3519, 25, 32, 34fvmptd 6875 . . 3 (𝜑 → ((𝐻𝐴)‘𝐵) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
3635feq1d 6578 . 2 (𝜑 → (((𝐻𝐴)‘𝐵):𝑋⟶ℝ ↔ (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ))
378, 36mpbird 256 1 (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3430  ifcif 4460   class class class wbr 5074  cmpt 5157  wf 6423  cfv 6427  (class class class)co 7268  m cmap 8603  cr 10858  cle 10998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8605
This theorem is referenced by:  hsphoidmvle2  44082  hsphoidmvle  44083  sge0hsphoire  44086  hoidmvlelem1  44092  hoidmvlelem2  44093  hoidmvlelem4  44095  hspmbllem1  44123  hspmbllem2  44124
  Copyright terms: Public domain W3C validator