Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0hsphoire Structured version   Visualization version   GIF version

Theorem sge0hsphoire 45968
Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0hsphoire.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
sge0hsphoire.f (𝜑𝑌 ∈ Fin)
sge0hsphoire.z (𝜑𝑍 ∈ (𝑊𝑌))
sge0hsphoire.w 𝑊 = (𝑌 ∪ {𝑍})
sge0hsphoire.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
sge0hsphoire.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
sge0hsphoire.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
sge0hsphoire.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
sge0hsphoire.s (𝜑𝑆 ∈ ℝ)
Assertion
Ref Expression
sge0hsphoire (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐷,𝑐,𝑘   𝐻,𝑎,𝑏,𝑘   𝑆,𝑎,𝑏,𝑘,𝑥   𝑆,𝑐,𝑥   𝑊,𝑎,𝑏,𝑗,𝑘,𝑥   𝑊,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑗,𝑐)   𝐷(𝑥,𝑗)   𝑆(𝑗)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑗,𝑎,𝑏)

Proof of Theorem sge0hsphoire
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nnex 12243 . . . 4 ℕ ∈ V
21a1i 11 . . 3 (𝜑 → ℕ ∈ V)
3 sge0hsphoire.l . . . . . 6 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4 sge0hsphoire.w . . . . . . . 8 𝑊 = (𝑌 ∪ {𝑍})
5 sge0hsphoire.f . . . . . . . . 9 (𝜑𝑌 ∈ Fin)
6 snfi 9063 . . . . . . . . . 10 {𝑍} ∈ Fin
76a1i 11 . . . . . . . . 9 (𝜑 → {𝑍} ∈ Fin)
8 unfi 9191 . . . . . . . . 9 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
95, 7, 8syl2anc 583 . . . . . . . 8 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
104, 9eqeltrid 2833 . . . . . . 7 (𝜑𝑊 ∈ Fin)
1110adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑊 ∈ Fin)
12 sge0hsphoire.c . . . . . . . 8 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
1312ffvelcdmda 7089 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑊))
14 elmapi 8862 . . . . . . 7 ((𝐶𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶𝑗):𝑊⟶ℝ)
1513, 14syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑊⟶ℝ)
16 sge0hsphoire.h . . . . . . . 8 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
17 eleq1w 2812 . . . . . . . . . . . 12 (𝑗 = → (𝑗𝑌𝑌))
18 fveq2 6892 . . . . . . . . . . . 12 (𝑗 = → (𝑐𝑗) = (𝑐))
1918breq1d 5153 . . . . . . . . . . . . 13 (𝑗 = → ((𝑐𝑗) ≤ 𝑥 ↔ (𝑐) ≤ 𝑥))
2019, 18ifbieq1d 4549 . . . . . . . . . . . 12 (𝑗 = → if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥) = if((𝑐) ≤ 𝑥, (𝑐), 𝑥))
2117, 18, 20ifbieq12d 4553 . . . . . . . . . . 11 (𝑗 = → if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)) = if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2221cbvmptv 5256 . . . . . . . . . 10 (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))) = (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2322mpteq2i 5248 . . . . . . . . 9 (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥))))
2423mpteq2i 5248 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
2516, 24eqtri 2756 . . . . . . 7 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
26 sge0hsphoire.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
2726adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
28 sge0hsphoire.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
2928ffvelcdmda 7089 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑊))
30 elmapi 8862 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷𝑗):𝑊⟶ℝ)
3129, 30syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑊⟶ℝ)
3225, 27, 11, 31hsphoif 45955 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑆)‘(𝐷𝑗)):𝑊⟶ℝ)
333, 11, 15, 32hoidmvcl 45961 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,)+∞))
34 eqid 2728 . . . . 5 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))
3533, 34fmptd 7119 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,)+∞))
36 icossicc 13440 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
3736a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
3835, 37fssd 6735 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,]+∞))
392, 38sge0cl 45760 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞))
402, 38sge0xrcl 45764 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ*)
41 pnfxr 11293 . . . 4 +∞ ∈ ℝ*
4241a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
43 sge0hsphoire.r . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
4443rexrd 11289 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
45 nfv 1910 . . . . 5 𝑗𝜑
4636, 33sselid 3977 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,]+∞))
473, 11, 15, 31hoidmvcl 45961 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,)+∞))
4836, 47sselid 3977 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,]+∞))
49 sge0hsphoire.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊𝑌))
5049adantr 480 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊𝑌))
513, 11, 50, 4, 27, 25, 15, 31hsphoidmvle 45965 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))
5245, 2, 46, 48, 51sge0lempt 45789 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5343ltpnfd 13128 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
5440, 44, 42, 52, 53xrlelttrd 13166 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) < +∞)
5540, 42, 54xrltned 44730 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞)
56 ge0xrre 44907 . 2 (((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
5739, 55, 56syl2anc 583 1 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  Vcvv 3470  cdif 3942  cun 3943  wss 3945  c0 4319  ifcif 4525  {csn 4625   class class class wbr 5143  cmpt 5226  wf 6539  cfv 6543  (class class class)co 7415  cmpo 7417  m cmap 8839  Fincfn 8958  cr 11132  0cc0 11133  +∞cpnf 11270  *cxr 11272  cle 11274  cn 12237  [,)cico 13353  [,]cicc 13354  cprod 15876  volcvol 25386  Σ^csumge0 45741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-2o 8482  df-er 8719  df-map 8841  df-pm 8842  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-fi 9429  df-sup 9460  df-inf 9461  df-oi 9528  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ioo 13355  df-ico 13357  df-icc 13358  df-fz 13512  df-fzo 13655  df-fl 13784  df-seq 13994  df-exp 14054  df-hash 14317  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-clim 15459  df-rlim 15460  df-sum 15660  df-prod 15877  df-rest 17398  df-topgen 17419  df-psmet 21265  df-xmet 21266  df-met 21267  df-bl 21268  df-mopn 21269  df-top 22790  df-topon 22807  df-bases 22843  df-cmp 23285  df-ovol 25387  df-vol 25388  df-sumge0 45742
This theorem is referenced by:  hoidmvlelem1  45974  hoidmvlelem2  45975
  Copyright terms: Public domain W3C validator