| Step | Hyp | Ref
| Expression |
| 1 | | nnex 12251 |
. . . 4
⊢ ℕ
∈ V |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ ∈
V) |
| 3 | | sge0hsphoire.l |
. . . . . 6
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 4 | | sge0hsphoire.w |
. . . . . . . 8
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
| 5 | | sge0hsphoire.f |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 6 | | snfi 9062 |
. . . . . . . . . 10
⊢ {𝑍} ∈ Fin |
| 7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑍} ∈ Fin) |
| 8 | | unfi 9190 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 9 | 5, 7, 8 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 10 | 4, 9 | eqeltrid 2839 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
| 12 | | sge0hsphoire.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
| 13 | 12 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 14 | | elmapi 8868 |
. . . . . . 7
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 15 | 13, 14 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 16 | | sge0hsphoire.h |
. . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 17 | | eleq1w 2818 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → (𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
| 18 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → (𝑐‘𝑗) = (𝑐‘ℎ)) |
| 19 | 18 | breq1d 5134 |
. . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘ℎ) ≤ 𝑥)) |
| 20 | 19, 18 | ifbieq1d 4530 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)) |
| 21 | 17, 18, 20 | ifbieq12d 4534 |
. . . . . . . . . . 11
⊢ (𝑗 = ℎ → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
| 22 | 21 | cbvmptv 5230 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
| 23 | 22 | mpteq2i 5222 |
. . . . . . . . 9
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)))) |
| 24 | 23 | mpteq2i 5222 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
| 25 | 16, 24 | eqtri 2759 |
. . . . . . 7
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
| 26 | | sge0hsphoire.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 27 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
| 28 | | sge0hsphoire.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
| 29 | 28 | ffvelcdmda 7079 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
| 30 | | elmapi 8868 |
. . . . . . . 8
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 32 | 25, 27, 11, 31 | hsphoif 46572 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑆)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
| 33 | 3, 11, 15, 32 | hoidmvcl 46578 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
| 34 | | eqid 2736 |
. . . . 5
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
| 35 | 33, 34 | fmptd 7109 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))):ℕ⟶(0[,)+∞)) |
| 36 | | icossicc 13458 |
. . . . 5
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
| 38 | 35, 37 | fssd 6728 |
. . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
| 39 | 2, 38 | sge0cl 46377 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
| 40 | 2, 38 | sge0xrcl 46381 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈
ℝ*) |
| 41 | | pnfxr 11294 |
. . . 4
⊢ +∞
∈ ℝ* |
| 42 | 41 | a1i 11 |
. . 3
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 43 | | sge0hsphoire.r |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 44 | 43 | rexrd 11290 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 45 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
| 46 | 36, 33 | sselid 3961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
| 47 | 3, 11, 15, 31 | hoidmvcl 46578 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
| 48 | 36, 47 | sselid 3961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
| 49 | | sge0hsphoire.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
| 51 | 3, 11, 50, 4, 27, 25, 15, 31 | hsphoidmvle 46582 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
| 52 | 45, 2, 46, 48, 51 | sge0lempt 46406 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 53 | 43 | ltpnfd 13142 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 54 | 40, 44, 42, 52, 53 | xrlelttrd 13181 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) < +∞) |
| 55 | 40, 42, 54 | xrltned 45351 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ≠ +∞) |
| 56 | | ge0xrre 45527 |
. 2
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
| 57 | 39, 55, 56 | syl2anc 584 |
1
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |