Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0hsphoire Structured version   Visualization version   GIF version

Theorem sge0hsphoire 42327
Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0hsphoire.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
sge0hsphoire.f (𝜑𝑌 ∈ Fin)
sge0hsphoire.z (𝜑𝑍 ∈ (𝑊𝑌))
sge0hsphoire.w 𝑊 = (𝑌 ∪ {𝑍})
sge0hsphoire.c (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))
sge0hsphoire.d (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))
sge0hsphoire.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
sge0hsphoire.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
sge0hsphoire.s (𝜑𝑆 ∈ ℝ)
Assertion
Ref Expression
sge0hsphoire (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐷,𝑐,𝑘   𝐻,𝑎,𝑏,𝑘   𝑆,𝑎,𝑏,𝑘,𝑥   𝑆,𝑐,𝑥   𝑊,𝑎,𝑏,𝑗,𝑘,𝑥   𝑊,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑗,𝑐)   𝐷(𝑥,𝑗)   𝑆(𝑗)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑗,𝑎,𝑏)

Proof of Theorem sge0hsphoire
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nnex 11444 . . . 4 ℕ ∈ V
21a1i 11 . . 3 (𝜑 → ℕ ∈ V)
3 sge0hsphoire.l . . . . . 6 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4 sge0hsphoire.w . . . . . . . 8 𝑊 = (𝑌 ∪ {𝑍})
5 sge0hsphoire.f . . . . . . . . 9 (𝜑𝑌 ∈ Fin)
6 snfi 8389 . . . . . . . . . 10 {𝑍} ∈ Fin
76a1i 11 . . . . . . . . 9 (𝜑 → {𝑍} ∈ Fin)
8 unfi 8578 . . . . . . . . 9 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
95, 7, 8syl2anc 576 . . . . . . . 8 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
104, 9syl5eqel 2864 . . . . . . 7 (𝜑𝑊 ∈ Fin)
1110adantr 473 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑊 ∈ Fin)
12 sge0hsphoire.c . . . . . . . 8 (𝜑𝐶:ℕ⟶(ℝ ↑𝑚 𝑊))
1312ffvelrnda 6674 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑𝑚 𝑊))
14 elmapi 8226 . . . . . . 7 ((𝐶𝑗) ∈ (ℝ ↑𝑚 𝑊) → (𝐶𝑗):𝑊⟶ℝ)
1513, 14syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑊⟶ℝ)
16 sge0hsphoire.h . . . . . . . 8 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
17 eleq1w 2842 . . . . . . . . . . . 12 (𝑗 = → (𝑗𝑌𝑌))
18 fveq2 6496 . . . . . . . . . . . 12 (𝑗 = → (𝑐𝑗) = (𝑐))
1918breq1d 4935 . . . . . . . . . . . . 13 (𝑗 = → ((𝑐𝑗) ≤ 𝑥 ↔ (𝑐) ≤ 𝑥))
2019, 18ifbieq1d 4367 . . . . . . . . . . . 12 (𝑗 = → if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥) = if((𝑐) ≤ 𝑥, (𝑐), 𝑥))
2117, 18, 20ifbieq12d 4371 . . . . . . . . . . 11 (𝑗 = → if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)) = if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2221cbvmptv 5024 . . . . . . . . . 10 (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))) = (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2322mpteq2i 5015 . . . . . . . . 9 (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥))))
2423mpteq2i 5015 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
2516, 24eqtri 2796 . . . . . . 7 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
26 sge0hsphoire.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
2726adantr 473 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
28 sge0hsphoire.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑𝑚 𝑊))
2928ffvelrnda 6674 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑𝑚 𝑊))
30 elmapi 8226 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑𝑚 𝑊) → (𝐷𝑗):𝑊⟶ℝ)
3129, 30syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑊⟶ℝ)
3225, 27, 11, 31hsphoif 42314 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑆)‘(𝐷𝑗)):𝑊⟶ℝ)
333, 11, 15, 32hoidmvcl 42320 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,)+∞))
34 eqid 2772 . . . . 5 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))
3533, 34fmptd 6699 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,)+∞))
36 icossicc 12638 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
3736a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
3835, 37fssd 6355 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,]+∞))
392, 38sge0cl 42119 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞))
402, 38sge0xrcl 42123 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ*)
41 pnfxr 10492 . . . 4 +∞ ∈ ℝ*
4241a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
43 sge0hsphoire.r . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
4443rexrd 10488 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
45 nfv 1873 . . . . 5 𝑗𝜑
4636, 33sseldi 3850 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,]+∞))
473, 11, 15, 31hoidmvcl 42320 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,)+∞))
4836, 47sseldi 3850 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,]+∞))
49 sge0hsphoire.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊𝑌))
5049adantr 473 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊𝑌))
513, 11, 50, 4, 27, 25, 15, 31hsphoidmvle 42324 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))
5245, 2, 46, 48, 51sge0lempt 42148 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5343ltpnfd 12331 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
5440, 44, 42, 52, 53xrlelttrd 12368 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) < +∞)
5540, 42, 54xrltned 41079 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞)
56 ge0xrre 41263 . 2 (((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
5739, 55, 56syl2anc 576 1 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wne 2961  Vcvv 3409  cdif 3820  cun 3821  wss 3823  c0 4172  ifcif 4344  {csn 4435   class class class wbr 4925  cmpt 5004  wf 6181  cfv 6185  (class class class)co 6974  cmpo 6976  𝑚 cmap 8204  Fincfn 8304  cr 10332  0cc0 10333  +∞cpnf 10469  *cxr 10471  cle 10473  cn 11437  [,)cico 12554  [,]cicc 12555  cprod 15117  volcvol 23779  Σ^csumge0 42100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-of 7225  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-fi 8668  df-sup 8699  df-inf 8700  df-oi 8767  df-dju 9122  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-q 12161  df-rp 12203  df-xneg 12322  df-xadd 12323  df-xmul 12324  df-ioo 12556  df-ico 12558  df-icc 12559  df-fz 12707  df-fzo 12848  df-fl 12975  df-seq 13183  df-exp 13243  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-clim 14704  df-rlim 14705  df-sum 14902  df-prod 15118  df-rest 16550  df-topgen 16571  df-psmet 20251  df-xmet 20252  df-met 20253  df-bl 20254  df-mopn 20255  df-top 21218  df-topon 21235  df-bases 21270  df-cmp 21711  df-ovol 23780  df-vol 23781  df-sumge0 42101
This theorem is referenced by:  hoidmvlelem1  42333  hoidmvlelem2  42334
  Copyright terms: Public domain W3C validator