Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0hsphoire Structured version   Visualization version   GIF version

Theorem sge0hsphoire 45605
Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0hsphoire.l 𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))
sge0hsphoire.f (πœ‘ β†’ π‘Œ ∈ Fin)
sge0hsphoire.z (πœ‘ β†’ 𝑍 ∈ (π‘Š βˆ– π‘Œ))
sge0hsphoire.w π‘Š = (π‘Œ βˆͺ {𝑍})
sge0hsphoire.c (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))
sge0hsphoire.d (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))
sge0hsphoire.r (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)
sge0hsphoire.h 𝐻 = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))
sge0hsphoire.s (πœ‘ β†’ 𝑆 ∈ ℝ)
Assertion
Ref Expression
sge0hsphoire (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ ℝ)
Distinct variable groups:   𝐢,π‘Ž,𝑏,π‘˜   𝐷,π‘Ž,𝑏,π‘˜   𝐷,𝑐,π‘˜   𝐻,π‘Ž,𝑏,π‘˜   𝑆,π‘Ž,𝑏,π‘˜,π‘₯   𝑆,𝑐,π‘₯   π‘Š,π‘Ž,𝑏,𝑗,π‘˜,π‘₯   π‘Š,𝑐,𝑗   π‘Œ,𝑐,𝑗,π‘₯   𝑍,𝑐,π‘˜,π‘₯   πœ‘,π‘Ž,𝑏,𝑗,π‘˜,π‘₯   πœ‘,𝑐
Allowed substitution hints:   𝐢(π‘₯,𝑗,𝑐)   𝐷(π‘₯,𝑗)   𝑆(𝑗)   𝐻(π‘₯,𝑗,𝑐)   𝐿(π‘₯,𝑗,π‘˜,π‘Ž,𝑏,𝑐)   π‘Œ(π‘˜,π‘Ž,𝑏)   𝑍(𝑗,π‘Ž,𝑏)

Proof of Theorem sge0hsphoire
Dummy variable β„Ž is distinct from all other variables.
StepHypRef Expression
1 nnex 12223 . . . 4 β„• ∈ V
21a1i 11 . . 3 (πœ‘ β†’ β„• ∈ V)
3 sge0hsphoire.l . . . . . 6 𝐿 = (π‘₯ ∈ Fin ↦ (π‘Ž ∈ (ℝ ↑m π‘₯), 𝑏 ∈ (ℝ ↑m π‘₯) ↦ if(π‘₯ = βˆ…, 0, βˆπ‘˜ ∈ π‘₯ (volβ€˜((π‘Žβ€˜π‘˜)[,)(π‘β€˜π‘˜))))))
4 sge0hsphoire.w . . . . . . . 8 π‘Š = (π‘Œ βˆͺ {𝑍})
5 sge0hsphoire.f . . . . . . . . 9 (πœ‘ β†’ π‘Œ ∈ Fin)
6 snfi 9047 . . . . . . . . . 10 {𝑍} ∈ Fin
76a1i 11 . . . . . . . . 9 (πœ‘ β†’ {𝑍} ∈ Fin)
8 unfi 9175 . . . . . . . . 9 ((π‘Œ ∈ Fin ∧ {𝑍} ∈ Fin) β†’ (π‘Œ βˆͺ {𝑍}) ∈ Fin)
95, 7, 8syl2anc 583 . . . . . . . 8 (πœ‘ β†’ (π‘Œ βˆͺ {𝑍}) ∈ Fin)
104, 9eqeltrid 2836 . . . . . . 7 (πœ‘ β†’ π‘Š ∈ Fin)
1110adantr 480 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ π‘Š ∈ Fin)
12 sge0hsphoire.c . . . . . . . 8 (πœ‘ β†’ 𝐢:β„•βŸΆ(ℝ ↑m π‘Š))
1312ffvelcdmda 7087 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΆβ€˜π‘—) ∈ (ℝ ↑m π‘Š))
14 elmapi 8846 . . . . . . 7 ((πΆβ€˜π‘—) ∈ (ℝ ↑m π‘Š) β†’ (πΆβ€˜π‘—):π‘ŠβŸΆβ„)
1513, 14syl 17 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (πΆβ€˜π‘—):π‘ŠβŸΆβ„)
16 sge0hsphoire.h . . . . . . . 8 𝐻 = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))))
17 eleq1w 2815 . . . . . . . . . . . 12 (𝑗 = β„Ž β†’ (𝑗 ∈ π‘Œ ↔ β„Ž ∈ π‘Œ))
18 fveq2 6892 . . . . . . . . . . . 12 (𝑗 = β„Ž β†’ (π‘β€˜π‘—) = (π‘β€˜β„Ž))
1918breq1d 5159 . . . . . . . . . . . . 13 (𝑗 = β„Ž β†’ ((π‘β€˜π‘—) ≀ π‘₯ ↔ (π‘β€˜β„Ž) ≀ π‘₯))
2019, 18ifbieq1d 4553 . . . . . . . . . . . 12 (𝑗 = β„Ž β†’ if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯) = if((π‘β€˜β„Ž) ≀ π‘₯, (π‘β€˜β„Ž), π‘₯))
2117, 18, 20ifbieq12d 4557 . . . . . . . . . . 11 (𝑗 = β„Ž β†’ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)) = if(β„Ž ∈ π‘Œ, (π‘β€˜β„Ž), if((π‘β€˜β„Ž) ≀ π‘₯, (π‘β€˜β„Ž), π‘₯)))
2221cbvmptv 5262 . . . . . . . . . 10 (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯))) = (β„Ž ∈ π‘Š ↦ if(β„Ž ∈ π‘Œ, (π‘β€˜β„Ž), if((π‘β€˜β„Ž) ≀ π‘₯, (π‘β€˜β„Ž), π‘₯)))
2322mpteq2i 5254 . . . . . . . . 9 (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯)))) = (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (β„Ž ∈ π‘Š ↦ if(β„Ž ∈ π‘Œ, (π‘β€˜β„Ž), if((π‘β€˜β„Ž) ≀ π‘₯, (π‘β€˜β„Ž), π‘₯))))
2423mpteq2i 5254 . . . . . . . 8 (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (𝑗 ∈ π‘Š ↦ if(𝑗 ∈ π‘Œ, (π‘β€˜π‘—), if((π‘β€˜π‘—) ≀ π‘₯, (π‘β€˜π‘—), π‘₯))))) = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (β„Ž ∈ π‘Š ↦ if(β„Ž ∈ π‘Œ, (π‘β€˜β„Ž), if((π‘β€˜β„Ž) ≀ π‘₯, (π‘β€˜β„Ž), π‘₯)))))
2516, 24eqtri 2759 . . . . . . 7 𝐻 = (π‘₯ ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m π‘Š) ↦ (β„Ž ∈ π‘Š ↦ if(β„Ž ∈ π‘Œ, (π‘β€˜β„Ž), if((π‘β€˜β„Ž) ≀ π‘₯, (π‘β€˜β„Ž), π‘₯)))))
26 sge0hsphoire.s . . . . . . . 8 (πœ‘ β†’ 𝑆 ∈ ℝ)
2726adantr 480 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 𝑆 ∈ ℝ)
28 sge0hsphoire.d . . . . . . . . 9 (πœ‘ β†’ 𝐷:β„•βŸΆ(ℝ ↑m π‘Š))
2928ffvelcdmda 7087 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (π·β€˜π‘—) ∈ (ℝ ↑m π‘Š))
30 elmapi 8846 . . . . . . . 8 ((π·β€˜π‘—) ∈ (ℝ ↑m π‘Š) β†’ (π·β€˜π‘—):π‘ŠβŸΆβ„)
3129, 30syl 17 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ (π·β€˜π‘—):π‘ŠβŸΆβ„)
3225, 27, 11, 31hsphoif 45592 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((π»β€˜π‘†)β€˜(π·β€˜π‘—)):π‘ŠβŸΆβ„)
333, 11, 15, 32hoidmvcl 45598 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))) ∈ (0[,)+∞))
34 eqid 2731 . . . . 5 (𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—)))) = (𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))
3533, 34fmptd 7116 . . . 4 (πœ‘ β†’ (𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—)))):β„•βŸΆ(0[,)+∞))
36 icossicc 13418 . . . . 5 (0[,)+∞) βŠ† (0[,]+∞)
3736a1i 11 . . . 4 (πœ‘ β†’ (0[,)+∞) βŠ† (0[,]+∞))
3835, 37fssd 6736 . . 3 (πœ‘ β†’ (𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—)))):β„•βŸΆ(0[,]+∞))
392, 38sge0cl 45397 . 2 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ (0[,]+∞))
402, 38sge0xrcl 45401 . . 3 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ ℝ*)
41 pnfxr 11273 . . . 4 +∞ ∈ ℝ*
4241a1i 11 . . 3 (πœ‘ β†’ +∞ ∈ ℝ*)
43 sge0hsphoire.r . . . . 5 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ)
4443rexrd 11269 . . . 4 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) ∈ ℝ*)
45 nfv 1916 . . . . 5 β„²π‘—πœ‘
4636, 33sselid 3981 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))) ∈ (0[,]+∞))
473, 11, 15, 31hoidmvcl 45598 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)) ∈ (0[,)+∞))
4836, 47sselid 3981 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)) ∈ (0[,]+∞))
49 sge0hsphoire.z . . . . . . 7 (πœ‘ β†’ 𝑍 ∈ (π‘Š βˆ– π‘Œ))
5049adantr 480 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ 𝑍 ∈ (π‘Š βˆ– π‘Œ))
513, 11, 50, 4, 27, 25, 15, 31hsphoidmvle 45602 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ β„•) β†’ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))) ≀ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))
5245, 2, 46, 48, 51sge0lempt 45426 . . . 4 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ≀ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))))
5343ltpnfd 13106 . . . 4 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)(π·β€˜π‘—)))) < +∞)
5440, 44, 42, 52, 53xrlelttrd 13144 . . 3 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) < +∞)
5540, 42, 54xrltned 44367 . 2 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) β‰  +∞)
56 ge0xrre 44544 . 2 (((Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ (0[,]+∞) ∧ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) β‰  +∞) β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ ℝ)
5739, 55, 56syl2anc 583 1 (πœ‘ β†’ (Ξ£^β€˜(𝑗 ∈ β„• ↦ ((πΆβ€˜π‘—)(πΏβ€˜π‘Š)((π»β€˜π‘†)β€˜(π·β€˜π‘—))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  Vcvv 3473   βˆ– cdif 3946   βˆͺ cun 3947   βŠ† wss 3949  βˆ…c0 4323  ifcif 4529  {csn 4629   class class class wbr 5149   ↦ cmpt 5232  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7412   ∈ cmpo 7414   ↑m cmap 8823  Fincfn 8942  β„cr 11112  0cc0 11113  +∞cpnf 11250  β„*cxr 11252   ≀ cle 11254  β„•cn 12217  [,)cico 13331  [,]cicc 13332  βˆcprod 15854  volcvol 25213  Ξ£^csumge0 45378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-er 8706  df-map 8825  df-pm 8826  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-rlim 15438  df-sum 15638  df-prod 15855  df-rest 17373  df-topgen 17394  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-top 22617  df-topon 22634  df-bases 22670  df-cmp 23112  df-ovol 25214  df-vol 25215  df-sumge0 45379
This theorem is referenced by:  hoidmvlelem1  45611  hoidmvlelem2  45612
  Copyright terms: Public domain W3C validator