Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0hsphoire Structured version   Visualization version   GIF version

Theorem sge0hsphoire 44127
Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0hsphoire.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
sge0hsphoire.f (𝜑𝑌 ∈ Fin)
sge0hsphoire.z (𝜑𝑍 ∈ (𝑊𝑌))
sge0hsphoire.w 𝑊 = (𝑌 ∪ {𝑍})
sge0hsphoire.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
sge0hsphoire.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
sge0hsphoire.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
sge0hsphoire.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
sge0hsphoire.s (𝜑𝑆 ∈ ℝ)
Assertion
Ref Expression
sge0hsphoire (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐷,𝑐,𝑘   𝐻,𝑎,𝑏,𝑘   𝑆,𝑎,𝑏,𝑘,𝑥   𝑆,𝑐,𝑥   𝑊,𝑎,𝑏,𝑗,𝑘,𝑥   𝑊,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑗,𝑐)   𝐷(𝑥,𝑗)   𝑆(𝑗)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑗,𝑎,𝑏)

Proof of Theorem sge0hsphoire
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nnex 11979 . . . 4 ℕ ∈ V
21a1i 11 . . 3 (𝜑 → ℕ ∈ V)
3 sge0hsphoire.l . . . . . 6 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4 sge0hsphoire.w . . . . . . . 8 𝑊 = (𝑌 ∪ {𝑍})
5 sge0hsphoire.f . . . . . . . . 9 (𝜑𝑌 ∈ Fin)
6 snfi 8834 . . . . . . . . . 10 {𝑍} ∈ Fin
76a1i 11 . . . . . . . . 9 (𝜑 → {𝑍} ∈ Fin)
8 unfi 8955 . . . . . . . . 9 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
95, 7, 8syl2anc 584 . . . . . . . 8 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
104, 9eqeltrid 2843 . . . . . . 7 (𝜑𝑊 ∈ Fin)
1110adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑊 ∈ Fin)
12 sge0hsphoire.c . . . . . . . 8 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
1312ffvelrnda 6961 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑊))
14 elmapi 8637 . . . . . . 7 ((𝐶𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶𝑗):𝑊⟶ℝ)
1513, 14syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑊⟶ℝ)
16 sge0hsphoire.h . . . . . . . 8 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
17 eleq1w 2821 . . . . . . . . . . . 12 (𝑗 = → (𝑗𝑌𝑌))
18 fveq2 6774 . . . . . . . . . . . 12 (𝑗 = → (𝑐𝑗) = (𝑐))
1918breq1d 5084 . . . . . . . . . . . . 13 (𝑗 = → ((𝑐𝑗) ≤ 𝑥 ↔ (𝑐) ≤ 𝑥))
2019, 18ifbieq1d 4483 . . . . . . . . . . . 12 (𝑗 = → if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥) = if((𝑐) ≤ 𝑥, (𝑐), 𝑥))
2117, 18, 20ifbieq12d 4487 . . . . . . . . . . 11 (𝑗 = → if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)) = if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2221cbvmptv 5187 . . . . . . . . . 10 (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))) = (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2322mpteq2i 5179 . . . . . . . . 9 (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥))))
2423mpteq2i 5179 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
2516, 24eqtri 2766 . . . . . . 7 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
26 sge0hsphoire.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
2726adantr 481 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
28 sge0hsphoire.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
2928ffvelrnda 6961 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑊))
30 elmapi 8637 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷𝑗):𝑊⟶ℝ)
3129, 30syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑊⟶ℝ)
3225, 27, 11, 31hsphoif 44114 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑆)‘(𝐷𝑗)):𝑊⟶ℝ)
333, 11, 15, 32hoidmvcl 44120 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,)+∞))
34 eqid 2738 . . . . 5 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))
3533, 34fmptd 6988 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,)+∞))
36 icossicc 13168 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
3736a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
3835, 37fssd 6618 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,]+∞))
392, 38sge0cl 43919 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞))
402, 38sge0xrcl 43923 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ*)
41 pnfxr 11029 . . . 4 +∞ ∈ ℝ*
4241a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
43 sge0hsphoire.r . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
4443rexrd 11025 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
45 nfv 1917 . . . . 5 𝑗𝜑
4636, 33sselid 3919 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,]+∞))
473, 11, 15, 31hoidmvcl 44120 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,)+∞))
4836, 47sselid 3919 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,]+∞))
49 sge0hsphoire.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊𝑌))
5049adantr 481 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊𝑌))
513, 11, 50, 4, 27, 25, 15, 31hsphoidmvle 44124 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))
5245, 2, 46, 48, 51sge0lempt 43948 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5343ltpnfd 12857 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
5440, 44, 42, 52, 53xrlelttrd 12894 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) < +∞)
5540, 42, 54xrltned 42896 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞)
56 ge0xrre 43069 . 2 (((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
5739, 55, 56syl2anc 584 1 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  cun 3885  wss 3887  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Fincfn 8733  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008  cle 11010  cn 11973  [,)cico 13081  [,]cicc 13082  cprod 15615  volcvol 24627  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629  df-sumge0 43901
This theorem is referenced by:  hoidmvlelem1  44133  hoidmvlelem2  44134
  Copyright terms: Public domain W3C validator