Step | Hyp | Ref
| Expression |
1 | | nnex 11909 |
. . . 4
⊢ ℕ
∈ V |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℕ ∈
V) |
3 | | sge0hsphoire.l |
. . . . . 6
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
4 | | sge0hsphoire.w |
. . . . . . . 8
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
5 | | sge0hsphoire.f |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ Fin) |
6 | | snfi 8788 |
. . . . . . . . . 10
⊢ {𝑍} ∈ Fin |
7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑍} ∈ Fin) |
8 | | unfi 8917 |
. . . . . . . . 9
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
9 | 5, 7, 8 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
10 | 4, 9 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Fin) |
11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
12 | | sge0hsphoire.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ ↑m
𝑊)) |
13 | 12 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑m 𝑊)) |
14 | | elmapi 8595 |
. . . . . . 7
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
16 | | sge0hsphoire.h |
. . . . . . . 8
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
17 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → (𝑗 ∈ 𝑌 ↔ ℎ ∈ 𝑌)) |
18 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → (𝑐‘𝑗) = (𝑐‘ℎ)) |
19 | 18 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ (𝑗 = ℎ → ((𝑐‘𝑗) ≤ 𝑥 ↔ (𝑐‘ℎ) ≤ 𝑥)) |
20 | 19, 18 | ifbieq1d 4480 |
. . . . . . . . . . . 12
⊢ (𝑗 = ℎ → if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥) = if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)) |
21 | 17, 18, 20 | ifbieq12d 4484 |
. . . . . . . . . . 11
⊢ (𝑗 = ℎ → if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) = if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
22 | 21 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) = (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))) |
23 | 22 | mpteq2i 5175 |
. . . . . . . . 9
⊢ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥)))) |
24 | 23 | mpteq2i 5175 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ
↑m 𝑊)
↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
25 | 16, 24 | eqtri 2766 |
. . . . . . 7
⊢ 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (ℎ ∈ 𝑊 ↦ if(ℎ ∈ 𝑌, (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑥, (𝑐‘ℎ), 𝑥))))) |
26 | | sge0hsphoire.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℝ) |
27 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) |
28 | | sge0hsphoire.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ ↑m
𝑊)) |
29 | 28 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑m 𝑊)) |
30 | | elmapi 8595 |
. . . . . . . 8
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
32 | 25, 27, 11, 31 | hsphoif 44004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐻‘𝑆)‘(𝐷‘𝑗)):𝑊⟶ℝ) |
33 | 3, 11, 15, 32 | hoidmvcl 44010 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,)+∞)) |
34 | | eqid 2738 |
. . . . 5
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))) |
35 | 33, 34 | fmptd 6970 |
. . . 4
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))):ℕ⟶(0[,)+∞)) |
36 | | icossicc 13097 |
. . . . 5
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
37 | 36 | a1i 11 |
. . . 4
⊢ (𝜑 → (0[,)+∞) ⊆
(0[,]+∞)) |
38 | 35, 37 | fssd 6602 |
. . 3
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗)))):ℕ⟶(0[,]+∞)) |
39 | 2, 38 | sge0cl 43809 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ (0[,]+∞)) |
40 | 2, 38 | sge0xrcl 43813 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈
ℝ*) |
41 | | pnfxr 10960 |
. . . 4
⊢ +∞
∈ ℝ* |
42 | 41 | a1i 11 |
. . 3
⊢ (𝜑 → +∞ ∈
ℝ*) |
43 | | sge0hsphoire.r |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
44 | 43 | rexrd 10956 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
45 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
46 | 36, 33 | sselid 3915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ∈ (0[,]+∞)) |
47 | 3, 11, 15, 31 | hoidmvcl 44010 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
48 | 36, 47 | sselid 3915 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
49 | | sge0hsphoire.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
50 | 49 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊 ∖ 𝑌)) |
51 | 3, 11, 50, 4, 27, 25, 15, 31 | hsphoidmvle 44014 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))) ≤ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
52 | 45, 2, 46, 48, 51 | sge0lempt 43838 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
53 | 43 | ltpnfd 12786 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
54 | 40, 44, 42, 52, 53 | xrlelttrd 12823 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) < +∞) |
55 | 40, 42, 54 | xrltned 42786 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ≠ +∞) |
56 | | ge0xrre 42959 |
. 2
⊢
(((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ (0[,]+∞) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ≠ +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |
57 | 39, 55, 56 | syl2anc 583 |
1
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)((𝐻‘𝑆)‘(𝐷‘𝑗))))) ∈ ℝ) |