Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volicon0 Structured version   Visualization version   GIF version

Theorem volicon0 41730
Description: The measure of a nonempty left-closed, right-open interval. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
volicon0.1 (𝜑𝐴 ∈ ℝ)
volicon0.2 (𝜑𝐵 ∈ ℝ)
volicon0.3 (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
volicon0 (𝜑 → (vol‘(𝐴[,)𝐵)) = (𝐵𝐴))

Proof of Theorem volicon0
StepHypRef Expression
1 volicon0.1 . . 3 (𝜑𝐴 ∈ ℝ)
2 volicon0.2 . . 3 (𝜑𝐵 ∈ ℝ)
3 volico 41141 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
41, 2, 3syl2anc 579 . 2 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
5 volicon0.3 . . 3 (𝜑𝐴 < 𝐵)
65iftrued 4315 . 2 (𝜑 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
74, 6eqtrd 2814 1 (𝜑 → (vol‘(𝐴[,)𝐵)) = (𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  ifcif 4307   class class class wbr 4888  cfv 6137  (class class class)co 6924  cr 10273  0cc0 10274   < clt 10413  cmin 10608  [,)cico 12494  volcvol 23678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-n0 11648  df-z 11734  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-ioo 12496  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-fl 12917  df-seq 13125  df-exp 13184  df-hash 13442  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-clim 14636  df-rlim 14637  df-sum 14834  df-rest 16480  df-topgen 16501  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-top 21117  df-topon 21134  df-bases 21169  df-cmp 21610  df-ovol 23679  df-vol 23680
This theorem is referenced by:  hoidmvlelem4  41753
  Copyright terms: Public domain W3C validator