Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccintsng Structured version   Visualization version   GIF version

Theorem iccintsng 43061
Description: Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccintsng (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})

Proof of Theorem iccintsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐴 ∈ ℝ*)
2 simpl2 1191 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵 ∈ ℝ*)
3 simprl 768 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐴[,]𝐵))
4 iccleub 13134 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
51, 2, 3, 4syl3anc 1370 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥𝐵)
6 simpl3 1192 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐶 ∈ ℝ*)
7 simprr 770 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐵[,]𝐶))
8 iccgelb 13135 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
92, 6, 7, 8syl3anc 1370 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵𝑥)
10 eliccxr 13167 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ ℝ*)
1211, 2jca 512 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 ∈ ℝ*𝐵 ∈ ℝ*))
13 xrletri3 12888 . . . . . . . 8 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
1412, 13syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
155, 9, 14mpbir2and 710 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 = 𝐵)
1615ex 413 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
1716adantr 481 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
18 simpll1 1211 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
19 simpll2 1212 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
20 simplrl 774 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝐵)
21 simpr 485 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
22 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
23 ubicc2 13197 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2423adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2522, 24eqeltrd 2839 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
2618, 19, 20, 21, 25syl31anc 1372 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
27 simpll3 1213 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
28 simplrr 775 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝐶)
29 simpr 485 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
30 lbicc2 13196 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
3130adantr 481 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,]𝐶))
3229, 31eqeltrd 2839 . . . . . . 7 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3319, 27, 28, 21, 32syl31anc 1372 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3426, 33jca 512 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
3534ex 413 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 = 𝐵 → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))))
3617, 35impbid 211 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) ↔ 𝑥 = 𝐵))
37 elin 3903 . . 3 (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
38 velsn 4577 . . 3 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
3936, 37, 383bitr4g 314 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ 𝑥 ∈ {𝐵}))
4039eqrdv 2736 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  {csn 4561   class class class wbr 5074  (class class class)co 7275  *cxr 11008  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-icc 13086
This theorem is referenced by:  iblspltprt  43514
  Copyright terms: Public domain W3C validator