Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccintsng Structured version   Visualization version   GIF version

Theorem iccintsng 43751
Description: Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccintsng (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})

Proof of Theorem iccintsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐴 ∈ ℝ*)
2 simpl2 1192 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵 ∈ ℝ*)
3 simprl 769 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐴[,]𝐵))
4 iccleub 13319 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
51, 2, 3, 4syl3anc 1371 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥𝐵)
6 simpl3 1193 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐶 ∈ ℝ*)
7 simprr 771 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐵[,]𝐶))
8 iccgelb 13320 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
92, 6, 7, 8syl3anc 1371 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵𝑥)
10 eliccxr 13352 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ ℝ*)
1211, 2jca 512 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 ∈ ℝ*𝐵 ∈ ℝ*))
13 xrletri3 13073 . . . . . . . 8 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
1412, 13syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
155, 9, 14mpbir2and 711 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 = 𝐵)
1615ex 413 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
1716adantr 481 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
18 simpll1 1212 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
19 simpll2 1213 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
20 simplrl 775 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝐵)
21 simpr 485 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
22 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
23 ubicc2 13382 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2423adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2522, 24eqeltrd 2838 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
2618, 19, 20, 21, 25syl31anc 1373 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
27 simpll3 1214 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
28 simplrr 776 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝐶)
29 simpr 485 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
30 lbicc2 13381 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
3130adantr 481 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,]𝐶))
3229, 31eqeltrd 2838 . . . . . . 7 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3319, 27, 28, 21, 32syl31anc 1373 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3426, 33jca 512 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
3534ex 413 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 = 𝐵 → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))))
3617, 35impbid 211 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) ↔ 𝑥 = 𝐵))
37 elin 3926 . . 3 (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
38 velsn 4602 . . 3 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
3936, 37, 383bitr4g 313 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ 𝑥 ∈ {𝐵}))
4039eqrdv 2734 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cin 3909  {csn 4586   class class class wbr 5105  (class class class)co 7357  *cxr 11188  cle 11190  [,]cicc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-icc 13271
This theorem is referenced by:  iblspltprt  44204
  Copyright terms: Public domain W3C validator