Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccintsng Structured version   Visualization version   GIF version

Theorem iccintsng 45528
Description: Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccintsng (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})

Proof of Theorem iccintsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐴 ∈ ℝ*)
2 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵 ∈ ℝ*)
3 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐴[,]𝐵))
4 iccleub 13369 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
51, 2, 3, 4syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥𝐵)
6 simpl3 1194 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐶 ∈ ℝ*)
7 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐵[,]𝐶))
8 iccgelb 13370 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
92, 6, 7, 8syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵𝑥)
10 eliccxr 13403 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ ℝ*)
1211, 2jca 511 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 ∈ ℝ*𝐵 ∈ ℝ*))
13 xrletri3 13121 . . . . . . . 8 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
1412, 13syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
155, 9, 14mpbir2and 713 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 = 𝐵)
1615ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
1716adantr 480 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
18 simpll1 1213 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
19 simpll2 1214 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
20 simplrl 776 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝐵)
21 simpr 484 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
22 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
23 ubicc2 13433 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2423adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2522, 24eqeltrd 2829 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
2618, 19, 20, 21, 25syl31anc 1375 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
27 simpll3 1215 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
28 simplrr 777 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝐶)
29 simpr 484 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
30 lbicc2 13432 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
3130adantr 480 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,]𝐶))
3229, 31eqeltrd 2829 . . . . . . 7 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3319, 27, 28, 21, 32syl31anc 1375 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3426, 33jca 511 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
3534ex 412 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 = 𝐵 → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))))
3617, 35impbid 212 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) ↔ 𝑥 = 𝐵))
37 elin 3933 . . 3 (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
38 velsn 4608 . . 3 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
3936, 37, 383bitr4g 314 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ 𝑥 ∈ {𝐵}))
4039eqrdv 2728 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  {csn 4592   class class class wbr 5110  (class class class)co 7390  *cxr 11214  cle 11216  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-icc 13320
This theorem is referenced by:  iblspltprt  45978
  Copyright terms: Public domain W3C validator