Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccintsng Structured version   Visualization version   GIF version

Theorem iccintsng 45441
Description: Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccintsng (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})

Proof of Theorem iccintsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1191 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐴 ∈ ℝ*)
2 simpl2 1192 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵 ∈ ℝ*)
3 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐴[,]𝐵))
4 iccleub 13462 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
51, 2, 3, 4syl3anc 1371 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥𝐵)
6 simpl3 1193 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐶 ∈ ℝ*)
7 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐵[,]𝐶))
8 iccgelb 13463 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
92, 6, 7, 8syl3anc 1371 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵𝑥)
10 eliccxr 13495 . . . . . . . . . 10 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ ℝ*)
1211, 2jca 511 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 ∈ ℝ*𝐵 ∈ ℝ*))
13 xrletri3 13216 . . . . . . . 8 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
1412, 13syl 17 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 = 𝐵 ↔ (𝑥𝐵𝐵𝑥)))
155, 9, 14mpbir2and 712 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 = 𝐵)
1615ex 412 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
1716adantr 480 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵))
18 simpll1 1212 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
19 simpll2 1213 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
20 simplrl 776 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐴𝐵)
21 simpr 484 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
22 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
23 ubicc2 13525 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2423adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
2522, 24eqeltrd 2844 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
2618, 19, 20, 21, 25syl31anc 1373 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
27 simpll3 1214 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐶 ∈ ℝ*)
28 simplrr 777 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝐵𝐶)
29 simpr 484 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
30 lbicc2 13524 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) → 𝐵 ∈ (𝐵[,]𝐶))
3130adantr 480 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,]𝐶))
3229, 31eqeltrd 2844 . . . . . . 7 (((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐵𝐶) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3319, 27, 28, 21, 32syl31anc 1373 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶))
3426, 33jca 511 . . . . 5 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
3534ex 412 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 = 𝐵 → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))))
3617, 35impbid 212 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) ↔ 𝑥 = 𝐵))
37 elin 3992 . . 3 (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))
38 velsn 4664 . . 3 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
3936, 37, 383bitr4g 314 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ 𝑥 ∈ {𝐵}))
4039eqrdv 2738 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  {csn 4648   class class class wbr 5166  (class class class)co 7448  *cxr 11323  cle 11325  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414
This theorem is referenced by:  iblspltprt  45894
  Copyright terms: Public domain W3C validator