| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐴 ∈
ℝ*) |
| 2 | | simpl2 1193 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵 ∈
ℝ*) |
| 3 | | simprl 770 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 4 | | iccleub 13423 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
| 5 | 1, 2, 3, 4 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ≤ 𝐵) |
| 6 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐶 ∈
ℝ*) |
| 7 | | simprr 772 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ (𝐵[,]𝐶)) |
| 8 | | iccgelb 13424 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝑥
∈ (𝐵[,]𝐶)) → 𝐵 ≤ 𝑥) |
| 9 | 2, 6, 7, 8 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝐵 ≤ 𝑥) |
| 10 | | eliccxr 13457 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*) |
| 11 | 3, 10 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 ∈ ℝ*) |
| 12 | 11, 2 | jca 511 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
| 13 | | xrletri3 13175 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 = 𝐵 ↔ (𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥))) |
| 14 | 12, 13 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → (𝑥 = 𝐵 ↔ (𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥))) |
| 15 | 5, 9, 14 | mpbir2and 713 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) → 𝑥 = 𝐵) |
| 16 | 15 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵)) |
| 17 | 16 | adantr 480 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 = 𝐵)) |
| 18 | | simpll1 1213 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) |
| 19 | | simpll2 1214 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) |
| 20 | | simplrl 776 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝐴 ≤ 𝐵) |
| 21 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
| 22 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
| 23 | | ubicc2 13487 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 24 | 23 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 25 | 22, 24 | eqeltrd 2835 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 26 | 18, 19, 20, 21, 25 | syl31anc 1375 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 27 | | simpll3 1215 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝐶 ∈
ℝ*) |
| 28 | | simplrr 777 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝐵 ≤ 𝐶) |
| 29 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐵
≤ 𝐶) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) |
| 30 | | lbicc2 13486 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐵
≤ 𝐶) → 𝐵 ∈ (𝐵[,]𝐶)) |
| 31 | 30 | adantr 480 |
. . . . . . . 8
⊢ (((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐵
≤ 𝐶) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐵[,]𝐶)) |
| 32 | 29, 31 | eqeltrd 2835 |
. . . . . . 7
⊢ (((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ 𝐵
≤ 𝐶) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶)) |
| 33 | 19, 27, 28, 21, 32 | syl31anc 1375 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → 𝑥 ∈ (𝐵[,]𝐶)) |
| 34 | 26, 33 | jca 511 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) ∧ 𝑥 = 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) |
| 35 | 34 | ex 412 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝑥 = 𝐵 → (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)))) |
| 36 | 17, 35 | impbid 212 |
. . 3
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶)) ↔ 𝑥 = 𝐵)) |
| 37 | | elin 3947 |
. . 3
⊢ (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐵[,]𝐶))) |
| 38 | | velsn 4622 |
. . 3
⊢ (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵) |
| 39 | 36, 37, 38 | 3bitr4g 314 |
. 2
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → (𝑥 ∈ ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) ↔ 𝑥 ∈ {𝐵})) |
| 40 | 39 | eqrdv 2734 |
1
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ*) ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵}) |