Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoiccdif Structured version   Visualization version   GIF version

Theorem icoiccdif 43062
Description: Left-closed right-open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
icoiccdif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ((𝐴[,]𝐵) ∖ {𝐵}))

Proof of Theorem icoiccdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icossicc 13168 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵))
32sselda 3921 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
4 elico1 13122 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
54biimpa 477 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵))
65simp1d 1141 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ*)
7 simplr 766 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
85simp3d 1143 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 < 𝐵)
9 xrltne 12897 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*𝑥 < 𝐵) → 𝐵𝑥)
106, 7, 8, 9syl3anc 1370 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐵𝑥)
1110necomd 2999 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥𝐵)
1211neneqd 2948 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ¬ 𝑥 = 𝐵)
13 velsn 4577 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
1412, 13sylnibr 329 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ¬ 𝑥 ∈ {𝐵})
153, 14eldifd 3898 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}))
1615ex 413 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})))
1716ssrdv 3927 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ((𝐴[,]𝐵) ∖ {𝐵}))
18 simpll 764 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐴 ∈ ℝ*)
19 simplr 766 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐵 ∈ ℝ*)
20 eldifi 4061 . . . . 5 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝑥 ∈ (𝐴[,]𝐵))
21 eliccxr 13167 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
2220, 21syl 17 . . . 4 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝑥 ∈ ℝ*)
2322adantl 482 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 ∈ ℝ*)
2420adantl 482 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 ∈ (𝐴[,]𝐵))
25 elicc1 13123 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
2625adantr 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
2724, 26mpbid 231 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵))
2827simp2d 1142 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐴𝑥)
29 eldifsni 4723 . . . . . 6 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝑥𝐵)
3029necomd 2999 . . . . 5 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝐵𝑥)
3130adantl 482 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐵𝑥)
3227simp3d 1143 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥𝐵)
33 xrleltne 12879 . . . . 5 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*𝑥𝐵) → (𝑥 < 𝐵𝐵𝑥))
3423, 19, 32, 33syl3anc 1370 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → (𝑥 < 𝐵𝐵𝑥))
3531, 34mpbird 256 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 < 𝐵)
3618, 19, 23, 28, 35elicod 13129 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 ∈ (𝐴[,)𝐵))
3717, 36eqelssd 3942 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ((𝐴[,]𝐵) ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  cdif 3884  wss 3887  {csn 4561   class class class wbr 5074  (class class class)co 7275  *cxr 11008   < clt 11009  cle 11010  [,)cico 13081  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-icc 13086
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator