Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoiccdif Structured version   Visualization version   GIF version

Theorem icoiccdif 45553
Description: Left-closed right-open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
icoiccdif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ((𝐴[,]𝐵) ∖ {𝐵}))

Proof of Theorem icoiccdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 icossicc 13453 . . . . . . 7 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵))
32sselda 3958 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
4 elico1 13405 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵)))
54biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ*𝐴𝑥𝑥 < 𝐵))
65simp1d 1142 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ*)
7 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
85simp3d 1144 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 < 𝐵)
9 xrltne 13179 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*𝑥 < 𝐵) → 𝐵𝑥)
106, 7, 8, 9syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐵𝑥)
1110necomd 2987 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥𝐵)
1211neneqd 2937 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ¬ 𝑥 = 𝐵)
13 velsn 4617 . . . . . 6 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
1412, 13sylnibr 329 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ¬ 𝑥 ∈ {𝐵})
153, 14eldifd 3937 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}))
1615ex 412 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})))
1716ssrdv 3964 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ((𝐴[,]𝐵) ∖ {𝐵}))
18 simpll 766 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐴 ∈ ℝ*)
19 simplr 768 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐵 ∈ ℝ*)
20 eldifi 4106 . . . . 5 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝑥 ∈ (𝐴[,]𝐵))
21 eliccxr 13452 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) → 𝑥 ∈ ℝ*)
2220, 21syl 17 . . . 4 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝑥 ∈ ℝ*)
2322adantl 481 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 ∈ ℝ*)
2420adantl 481 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 ∈ (𝐴[,]𝐵))
25 elicc1 13406 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
2625adantr 480 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵)))
2724, 26mpbid 232 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → (𝑥 ∈ ℝ*𝐴𝑥𝑥𝐵))
2827simp2d 1143 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐴𝑥)
29 eldifsni 4766 . . . . . 6 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝑥𝐵)
3029necomd 2987 . . . . 5 (𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵}) → 𝐵𝑥)
3130adantl 481 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝐵𝑥)
3227simp3d 1144 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥𝐵)
33 xrleltne 13161 . . . . 5 ((𝑥 ∈ ℝ*𝐵 ∈ ℝ*𝑥𝐵) → (𝑥 < 𝐵𝐵𝑥))
3423, 19, 32, 33syl3anc 1373 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → (𝑥 < 𝐵𝐵𝑥))
3531, 34mpbird 257 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 < 𝐵)
3618, 19, 23, 28, 35elicod 13412 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ((𝐴[,]𝐵) ∖ {𝐵})) → 𝑥 ∈ (𝐴[,)𝐵))
3717, 36eqelssd 3980 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ((𝐴[,]𝐵) ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cdif 3923  wss 3926  {csn 4601   class class class wbr 5119  (class class class)co 7405  *cxr 11268   < clt 11269  cle 11270  [,)cico 13364  [,]cicc 13365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368  df-icc 13369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator