Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooshift Structured version   Visualization version   GIF version

Theorem iooshift 43060
Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooshift.1 (𝜑𝐴 ∈ ℝ)
iooshift.2 (𝜑𝐵 ∈ ℝ)
iooshift.3 (𝜑𝑇 ∈ ℝ)
Assertion
Ref Expression
iooshift (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧   𝑤,𝑇,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem iooshift
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
21rexbidv 3226 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
32elrab 3624 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
4 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
5 nfv 1917 . . . . . . . 8 𝑧𝜑
6 nfv 1917 . . . . . . . . 9 𝑧 𝑥 ∈ ℂ
7 nfre1 3239 . . . . . . . . 9 𝑧𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)
86, 7nfan 1902 . . . . . . . 8 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
95, 8nfan 1902 . . . . . . 7 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
10 nfv 1917 . . . . . . 7 𝑧 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
11 simp3 1137 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
12 iooshift.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
13 iooshift.3 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ)
1412, 13readdcld 11004 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
1514rexrd 11025 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝑇) ∈ ℝ*)
1615adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) ∈ ℝ*)
17 iooshift.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
1817, 13readdcld 11004 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
1918rexrd 11025 . . . . . . . . . . . . 13 (𝜑 → (𝐵 + 𝑇) ∈ ℝ*)
2019adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑇) ∈ ℝ*)
21 ioossre 13140 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2322sselda 3921 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
2413adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑇 ∈ ℝ)
2523, 24readdcld 11004 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
2612adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2726rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
2817adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
2928rexrd 11025 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
30 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
31 ioogtlb 43033 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3227, 29, 30, 31syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3326, 23, 24, 32ltadd1dd 11586 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) < (𝑧 + 𝑇))
34 iooltub 43048 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3527, 29, 30, 34syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3623, 28, 24, 35ltadd1dd 11586 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) < (𝐵 + 𝑇))
3716, 20, 25, 33, 36eliood 43036 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
38373adant3 1131 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
3911, 38eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
40393exp 1118 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
4140adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
429, 10, 41rexlimd 3250 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
434, 42mpd 15 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
443, 43sylan2b 594 . . . 4 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
45 elioore 13109 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) → 𝑥 ∈ ℝ)
4645adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
4746recnd 11003 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
4812rexrd 11025 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
4948adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 ∈ ℝ*)
5017rexrd 11025 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
5150adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐵 ∈ ℝ*)
5213adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
5346, 52resubcld 11403 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
5412recnd 11003 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
5513recnd 11003 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
5654, 55pncand 11333 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
5756eqcomd 2744 . . . . . . . . 9 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
5857adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
5914adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
6015adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ*)
6119adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ*)
62 simpr 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
63 ioogtlb 43033 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6460, 61, 62, 63syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6559, 46, 52, 64ltsub1dd 11587 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥𝑇))
6658, 65eqbrtrd 5096 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 < (𝑥𝑇))
6718adantr 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
68 iooltub 43048 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
6960, 61, 62, 68syl3anc 1370 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
7046, 67, 52, 69ltsub1dd 11587 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < ((𝐵 + 𝑇) − 𝑇))
7117recnd 11003 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
7271, 55pncand 11333 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7372adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7470, 73breqtrd 5100 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < 𝐵)
7549, 51, 53, 66, 74eliood 43036 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴(,)𝐵))
7655adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
7747, 76npcand 11336 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
7877eqcomd 2744 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
79 oveq1 7282 . . . . . . 7 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
8079rspceeqv 3575 . . . . . 6 (((𝑥𝑇) ∈ (𝐴(,)𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8175, 78, 80syl2anc 584 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8247, 81, 3sylanbrc 583 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
8344, 82impbida 798 . . 3 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
8483eqrdv 2736 . 2 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
8584eqcomd 2744 1 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  wss 3887   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870   + caddc 10874  *cxr 11008   < clt 11009  cmin 11205  (,)cioo 13079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-ioo 13083
This theorem is referenced by:  cncfshiftioo  43433  fourierdlem48  43695  fourierdlem49  43696  fourierdlem89  43736  fourierdlem91  43738  fourierdlem92  43739
  Copyright terms: Public domain W3C validator