Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooshift Structured version   Visualization version   GIF version

Theorem iooshift 42735
Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooshift.1 (𝜑𝐴 ∈ ℝ)
iooshift.2 (𝜑𝐵 ∈ ℝ)
iooshift.3 (𝜑𝑇 ∈ ℝ)
Assertion
Ref Expression
iooshift (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧   𝑤,𝑇,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem iooshift
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2741 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
21rexbidv 3216 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
32elrab 3602 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
4 simprr 773 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
5 nfv 1922 . . . . . . . 8 𝑧𝜑
6 nfv 1922 . . . . . . . . 9 𝑧 𝑥 ∈ ℂ
7 nfre1 3225 . . . . . . . . 9 𝑧𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)
86, 7nfan 1907 . . . . . . . 8 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
95, 8nfan 1907 . . . . . . 7 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
10 nfv 1922 . . . . . . 7 𝑧 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
11 simp3 1140 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
12 iooshift.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
13 iooshift.3 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ)
1412, 13readdcld 10862 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
1514rexrd 10883 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝑇) ∈ ℝ*)
1615adantr 484 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) ∈ ℝ*)
17 iooshift.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
1817, 13readdcld 10862 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
1918rexrd 10883 . . . . . . . . . . . . 13 (𝜑 → (𝐵 + 𝑇) ∈ ℝ*)
2019adantr 484 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑇) ∈ ℝ*)
21 ioossre 12996 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2322sselda 3901 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
2413adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑇 ∈ ℝ)
2523, 24readdcld 10862 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
2612adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2726rexrd 10883 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
2817adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
2928rexrd 10883 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
30 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
31 ioogtlb 42708 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3227, 29, 30, 31syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3326, 23, 24, 32ltadd1dd 11443 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) < (𝑧 + 𝑇))
34 iooltub 42723 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3527, 29, 30, 34syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3623, 28, 24, 35ltadd1dd 11443 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) < (𝐵 + 𝑇))
3716, 20, 25, 33, 36eliood 42711 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
38373adant3 1134 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
3911, 38eqeltrd 2838 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
40393exp 1121 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
4140adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
429, 10, 41rexlimd 3236 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
434, 42mpd 15 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
443, 43sylan2b 597 . . . 4 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
45 elioore 12965 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) → 𝑥 ∈ ℝ)
4645adantl 485 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
4746recnd 10861 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
4812rexrd 10883 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
4948adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 ∈ ℝ*)
5017rexrd 10883 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
5150adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐵 ∈ ℝ*)
5213adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
5346, 52resubcld 11260 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
5412recnd 10861 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
5513recnd 10861 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
5654, 55pncand 11190 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
5756eqcomd 2743 . . . . . . . . 9 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
5857adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
5914adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
6015adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ*)
6119adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ*)
62 simpr 488 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
63 ioogtlb 42708 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6460, 61, 62, 63syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6559, 46, 52, 64ltsub1dd 11444 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥𝑇))
6658, 65eqbrtrd 5075 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 < (𝑥𝑇))
6718adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
68 iooltub 42723 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
6960, 61, 62, 68syl3anc 1373 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
7046, 67, 52, 69ltsub1dd 11444 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < ((𝐵 + 𝑇) − 𝑇))
7117recnd 10861 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
7271, 55pncand 11190 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7372adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7470, 73breqtrd 5079 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < 𝐵)
7549, 51, 53, 66, 74eliood 42711 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴(,)𝐵))
7655adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
7747, 76npcand 11193 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
7877eqcomd 2743 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
79 oveq1 7220 . . . . . . 7 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
8079rspceeqv 3552 . . . . . 6 (((𝑥𝑇) ∈ (𝐴(,)𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8175, 78, 80syl2anc 587 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8247, 81, 3sylanbrc 586 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
8344, 82impbida 801 . . 3 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
8483eqrdv 2735 . 2 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
8584eqcomd 2743 1 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062  {crab 3065  wss 3866   class class class wbr 5053  (class class class)co 7213  cc 10727  cr 10728   + caddc 10732  *cxr 10866   < clt 10867  cmin 11062  (,)cioo 12935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-ioo 12939
This theorem is referenced by:  cncfshiftioo  43108  fourierdlem48  43370  fourierdlem49  43371  fourierdlem89  43411  fourierdlem91  43413  fourierdlem92  43414
  Copyright terms: Public domain W3C validator