Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooshift Structured version   Visualization version   GIF version

Theorem iooshift 42950
Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooshift.1 (𝜑𝐴 ∈ ℝ)
iooshift.2 (𝜑𝐵 ∈ ℝ)
iooshift.3 (𝜑𝑇 ∈ ℝ)
Assertion
Ref Expression
iooshift (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧   𝑤,𝑇,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem iooshift
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
21rexbidv 3225 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
32elrab 3617 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
4 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
5 nfv 1918 . . . . . . . 8 𝑧𝜑
6 nfv 1918 . . . . . . . . 9 𝑧 𝑥 ∈ ℂ
7 nfre1 3234 . . . . . . . . 9 𝑧𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)
86, 7nfan 1903 . . . . . . . 8 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
95, 8nfan 1903 . . . . . . 7 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
10 nfv 1918 . . . . . . 7 𝑧 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
11 simp3 1136 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
12 iooshift.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
13 iooshift.3 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ)
1412, 13readdcld 10935 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
1514rexrd 10956 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝑇) ∈ ℝ*)
1615adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) ∈ ℝ*)
17 iooshift.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
1817, 13readdcld 10935 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
1918rexrd 10956 . . . . . . . . . . . . 13 (𝜑 → (𝐵 + 𝑇) ∈ ℝ*)
2019adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑇) ∈ ℝ*)
21 ioossre 13069 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2322sselda 3917 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
2413adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑇 ∈ ℝ)
2523, 24readdcld 10935 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
2612adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2726rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
2817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
2928rexrd 10956 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
30 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
31 ioogtlb 42923 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3227, 29, 30, 31syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3326, 23, 24, 32ltadd1dd 11516 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) < (𝑧 + 𝑇))
34 iooltub 42938 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3527, 29, 30, 34syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3623, 28, 24, 35ltadd1dd 11516 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) < (𝐵 + 𝑇))
3716, 20, 25, 33, 36eliood 42926 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
38373adant3 1130 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
3911, 38eqeltrd 2839 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
40393exp 1117 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
4140adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
429, 10, 41rexlimd 3245 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
434, 42mpd 15 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
443, 43sylan2b 593 . . . 4 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
45 elioore 13038 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) → 𝑥 ∈ ℝ)
4645adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
4746recnd 10934 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
4812rexrd 10956 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
4948adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 ∈ ℝ*)
5017rexrd 10956 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
5150adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐵 ∈ ℝ*)
5213adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
5346, 52resubcld 11333 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
5412recnd 10934 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
5513recnd 10934 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
5654, 55pncand 11263 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
5756eqcomd 2744 . . . . . . . . 9 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
5857adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
5914adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
6015adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ*)
6119adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ*)
62 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
63 ioogtlb 42923 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6460, 61, 62, 63syl3anc 1369 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6559, 46, 52, 64ltsub1dd 11517 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥𝑇))
6658, 65eqbrtrd 5092 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 < (𝑥𝑇))
6718adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
68 iooltub 42938 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
6960, 61, 62, 68syl3anc 1369 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
7046, 67, 52, 69ltsub1dd 11517 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < ((𝐵 + 𝑇) − 𝑇))
7117recnd 10934 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
7271, 55pncand 11263 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7372adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7470, 73breqtrd 5096 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < 𝐵)
7549, 51, 53, 66, 74eliood 42926 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴(,)𝐵))
7655adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
7747, 76npcand 11266 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
7877eqcomd 2744 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
79 oveq1 7262 . . . . . . 7 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
8079rspceeqv 3567 . . . . . 6 (((𝑥𝑇) ∈ (𝐴(,)𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8175, 78, 80syl2anc 583 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8247, 81, 3sylanbrc 582 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
8344, 82impbida 797 . . 3 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
8483eqrdv 2736 . 2 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
8584eqcomd 2744 1 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  wss 3883   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801   + caddc 10805  *cxr 10939   < clt 10940  cmin 11135  (,)cioo 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ioo 13012
This theorem is referenced by:  cncfshiftioo  43323  fourierdlem48  43585  fourierdlem49  43586  fourierdlem89  43626  fourierdlem91  43628  fourierdlem92  43629
  Copyright terms: Public domain W3C validator