Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iooshift Structured version   Visualization version   GIF version

Theorem iooshift 41263
Description: An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iooshift.1 (𝜑𝐴 ∈ ℝ)
iooshift.2 (𝜑𝐵 ∈ ℝ)
iooshift.3 (𝜑𝑇 ∈ ℝ)
Assertion
Ref Expression
iooshift (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Distinct variable groups:   𝑤,𝐴,𝑧   𝑤,𝐵,𝑧   𝑤,𝑇,𝑧   𝜑,𝑧
Allowed substitution hint:   𝜑(𝑤)

Proof of Theorem iooshift
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2775 . . . . . . 7 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
21rexbidv 3235 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
32elrab 3588 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
4 simprr 761 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
5 nfv 1874 . . . . . . . 8 𝑧𝜑
6 nfv 1874 . . . . . . . . 9 𝑧 𝑥 ∈ ℂ
7 nfre1 3244 . . . . . . . . 9 𝑧𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)
86, 7nfan 1863 . . . . . . . 8 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
95, 8nfan 1863 . . . . . . 7 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)))
10 nfv 1874 . . . . . . 7 𝑧 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))
11 simp3 1119 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
12 iooshift.1 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
13 iooshift.3 . . . . . . . . . . . . . . 15 (𝜑𝑇 ∈ ℝ)
1412, 13readdcld 10467 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
1514rexrd 10488 . . . . . . . . . . . . 13 (𝜑 → (𝐴 + 𝑇) ∈ ℝ*)
1615adantr 473 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) ∈ ℝ*)
17 iooshift.2 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
1817, 13readdcld 10467 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
1918rexrd 10488 . . . . . . . . . . . . 13 (𝜑 → (𝐵 + 𝑇) ∈ ℝ*)
2019adantr 473 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑇) ∈ ℝ*)
21 ioossre 12612 . . . . . . . . . . . . . . 15 (𝐴(,)𝐵) ⊆ ℝ
2221a1i 11 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
2322sselda 3851 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ)
2413adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑇 ∈ ℝ)
2523, 24readdcld 10467 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
2612adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
2726rexrd 10488 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
2817adantr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
2928rexrd 10488 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
30 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵))
31 ioogtlb 41235 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3227, 29, 30, 31syl3anc 1352 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧)
3326, 23, 24, 32ltadd1dd 11050 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) < (𝑧 + 𝑇))
34 iooltub 41251 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3527, 29, 30, 34syl3anc 1352 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵)
3623, 28, 24, 35ltadd1dd 11050 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) < (𝐵 + 𝑇))
3716, 20, 25, 33, 36eliood 41238 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
38373adant3 1113 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
3911, 38eqeltrd 2859 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
40393exp 1100 . . . . . . . 8 (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
4140adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))))
429, 10, 41rexlimd 3253 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
434, 42mpd 15 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
443, 43sylan2b 585 . . . 4 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
45 elioore 12582 . . . . . . 7 (𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) → 𝑥 ∈ ℝ)
4645adantl 474 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
4746recnd 10466 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
4812rexrd 10488 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
4948adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 ∈ ℝ*)
5017rexrd 10488 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
5150adantr 473 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐵 ∈ ℝ*)
5213adantr 473 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
5346, 52resubcld 10867 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
5412recnd 10466 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
5513recnd 10466 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
5654, 55pncand 10797 . . . . . . . . . 10 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
5756eqcomd 2777 . . . . . . . . 9 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
5857adantr 473 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
5914adantr 473 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
6015adantr 473 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ*)
6119adantr 473 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ*)
62 simpr 477 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
63 ioogtlb 41235 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6460, 61, 62, 63syl3anc 1352 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥)
6559, 46, 52, 64ltsub1dd 11051 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥𝑇))
6658, 65eqbrtrd 4947 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 < (𝑥𝑇))
6718adantr 473 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
68 iooltub 41251 . . . . . . . . . 10 (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ*𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
6960, 61, 62, 68syl3anc 1352 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇))
7046, 67, 52, 69ltsub1dd 11051 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < ((𝐵 + 𝑇) − 𝑇))
7117recnd 10466 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
7271, 55pncand 10797 . . . . . . . . 9 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7372adantr 473 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
7470, 73breqtrd 4951 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) < 𝐵)
7549, 51, 53, 66, 74eliood 41238 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴(,)𝐵))
7655adantr 473 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
7747, 76npcand 10800 . . . . . . 7 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
7877eqcomd 2777 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
79 oveq1 6981 . . . . . . 7 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
8079rspceeqv 3546 . . . . . 6 (((𝑥𝑇) ∈ (𝐴(,)𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8175, 78, 80syl2anc 576 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))
8247, 81, 3sylanbrc 575 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
8344, 82impbida 789 . . 3 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))
8483eqrdv 2769 . 2 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))
8584eqcomd 2777 1 (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wrex 3082  {crab 3085  wss 3822   class class class wbr 4925  (class class class)co 6974  cc 10331  cr 10332   + caddc 10336  *cxr 10471   < clt 10472  cmin 10668  (,)cioo 12552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-1st 7499  df-2nd 7500  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-ioo 12556
This theorem is referenced by:  cncfshiftioo  41639  fourierdlem48  41904  fourierdlem49  41905  fourierdlem89  41945  fourierdlem91  41947  fourierdlem92  41948
  Copyright terms: Public domain W3C validator