Step | Hyp | Ref
| Expression |
1 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇))) |
2 | 1 | rexbidv 3226 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) |
3 | 2 | elrab 3624 |
. . . . 5
⊢ (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) |
4 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)) |
5 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑧𝜑 |
6 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑥 ∈ ℂ |
7 | | nfre1 3239 |
. . . . . . . . 9
⊢
Ⅎ𝑧∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) |
8 | 6, 7 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑧(𝑥 ∈ ℂ ∧
∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)) |
9 | 5, 8 | nfan 1902 |
. . . . . . 7
⊢
Ⅎ𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) |
10 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑧 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) |
11 | | simp3 1137 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇)) |
12 | | iooshift.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ ℝ) |
13 | | iooshift.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈ ℝ) |
14 | 12, 13 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 + 𝑇) ∈ ℝ) |
15 | 14 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴 + 𝑇) ∈
ℝ*) |
16 | 15 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) ∈
ℝ*) |
17 | | iooshift.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ ℝ) |
18 | 17, 13 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 + 𝑇) ∈ ℝ) |
19 | 18 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 + 𝑇) ∈
ℝ*) |
20 | 19 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐵 + 𝑇) ∈
ℝ*) |
21 | | ioossre 13140 |
. . . . . . . . . . . . . . 15
⊢ (𝐴(,)𝐵) ⊆ ℝ |
22 | 21 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
23 | 22 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ ℝ) |
24 | 13 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑇 ∈ ℝ) |
25 | 23, 24 | readdcld 11004 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ℝ) |
26 | 12 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
27 | 26 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 ∈
ℝ*) |
28 | 17 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
29 | 28 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝐵 ∈
ℝ*) |
30 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 ∈ (𝐴(,)𝐵)) |
31 | | ioogtlb 43033 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑧
∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧) |
32 | 27, 29, 30, 31 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑧) |
33 | 26, 23, 24, 32 | ltadd1dd 11586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝐴 + 𝑇) < (𝑧 + 𝑇)) |
34 | | iooltub 43048 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑧
∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵) |
35 | 27, 29, 30, 34 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → 𝑧 < 𝐵) |
36 | 23, 28, 24, 35 | ltadd1dd 11586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) < (𝐵 + 𝑇)) |
37 | 16, 20, 25, 33, 36 | eliood 43036 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) |
38 | 37 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) |
39 | 11, 38 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (𝐴(,)𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) |
40 | 39 | 3exp 1118 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))) |
41 | 40 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴(,)𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))))) |
42 | 9, 10, 41 | rexlimd 3250 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))) |
43 | 4, 42 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) |
44 | 3, 43 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) |
45 | | elioore 13109 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) → 𝑥 ∈ ℝ) |
46 | 45 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℝ) |
47 | 46 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ℂ) |
48 | 12 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
49 | 48 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 ∈
ℝ*) |
50 | 17 | rexrd 11025 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
51 | 50 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐵 ∈
ℝ*) |
52 | 13 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℝ) |
53 | 46, 52 | resubcld 11403 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥 − 𝑇) ∈ ℝ) |
54 | 12 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℂ) |
55 | 13 | recnd 11003 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑇 ∈ ℂ) |
56 | 54, 55 | pncand 11333 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴) |
57 | 56 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
58 | 57 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇)) |
59 | 14 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ) |
60 | 15 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈
ℝ*) |
61 | 19 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈
ℝ*) |
62 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) |
63 | | ioogtlb 43033 |
. . . . . . . . . 10
⊢ (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥) |
64 | 60, 61, 62, 63 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐴 + 𝑇) < 𝑥) |
65 | 59, 46, 52, 64 | ltsub1dd 11587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) < (𝑥 − 𝑇)) |
66 | 58, 65 | eqbrtrd 5096 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝐴 < (𝑥 − 𝑇)) |
67 | 18 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ) |
68 | | iooltub 43048 |
. . . . . . . . . 10
⊢ (((𝐴 + 𝑇) ∈ ℝ* ∧ (𝐵 + 𝑇) ∈ ℝ* ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇)) |
69 | 60, 61, 62, 68 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 < (𝐵 + 𝑇)) |
70 | 46, 67, 52, 69 | ltsub1dd 11587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥 − 𝑇) < ((𝐵 + 𝑇) − 𝑇)) |
71 | 17 | recnd 11003 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℂ) |
72 | 71, 55 | pncand 11333 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
73 | 72 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵) |
74 | 70, 73 | breqtrd 5100 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥 − 𝑇) < 𝐵) |
75 | 49, 51, 53, 66, 74 | eliood 43036 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → (𝑥 − 𝑇) ∈ (𝐴(,)𝐵)) |
76 | 55 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑇 ∈ ℂ) |
77 | 47, 76 | npcand 11336 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ((𝑥 − 𝑇) + 𝑇) = 𝑥) |
78 | 77 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 = ((𝑥 − 𝑇) + 𝑇)) |
79 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑧 = (𝑥 − 𝑇) → (𝑧 + 𝑇) = ((𝑥 − 𝑇) + 𝑇)) |
80 | 79 | rspceeqv 3575 |
. . . . . 6
⊢ (((𝑥 − 𝑇) ∈ (𝐴(,)𝐵) ∧ 𝑥 = ((𝑥 − 𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)) |
81 | 75, 78, 80 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴(,)𝐵)𝑥 = (𝑧 + 𝑇)) |
82 | 47, 81, 3 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) |
83 | 44, 82 | impbida 798 |
. . 3
⊢ (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)))) |
84 | 83 | eqrdv 2736 |
. 2
⊢ (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)(,)(𝐵 + 𝑇))) |
85 | 84 | eqcomd 2744 |
1
⊢ (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)}) |