| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ubicc2 | Structured version Visualization version GIF version | ||
| Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
| Ref | Expression |
|---|---|
| ubicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 3 | xrleid 13167 | . . 3 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
| 4 | 3 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
| 5 | elicc1 13406 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) | |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
| 7 | 1, 2, 4, 6 | mpbir3and 1343 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7405 ℝ*cxr 11268 ≤ cle 11270 [,]cicc 13365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-icc 13369 |
| This theorem is referenced by: xnn0xrge0 13523 iccpnfcnv 24893 oprpiece1res2 24901 ivthlem2 25405 ivth2 25408 ivthle 25409 ivthle2 25410 dyadmaxlem 25550 cmvth 25947 cmvthOLD 25948 mvth 25949 dvlip 25950 c1liplem1 25953 dvgt0lem1 25959 lhop1lem 25970 dvcnvrelem1 25974 dvcvx 25977 dvfsumle 25978 dvfsumleOLD 25979 dvfsumge 25980 dvfsumabs 25981 dvfsumlem2 25985 dvfsumlem2OLD 25986 ftc2 26003 ftc2ditglem 26004 itgparts 26006 itgsubstlem 26007 itgpowd 26009 efcvx 26411 pige3ALT 26481 cos0pilt1 26493 logccv 26624 loglesqrt 26723 pntlem3 27572 eliccioo 32905 xrge0iifcnv 33964 lmxrge0 33983 esumpinfval 34104 hashf2 34115 esumcvg 34117 ftc2re 34630 cvmliftlem7 35313 cvmliftlem10 35316 ivthALT 36353 ftc2nc 37726 areacirc 37737 iccintsng 45552 pnfel0pnf 45557 limcicciooub 45666 icccncfext 45916 dvbdfbdioolem1 45957 itgsin0pilem1 45979 itgcoscmulx 45998 itgsincmulx 46003 itgsubsticc 46005 fourierdlem20 46156 fourierdlem54 46189 fourierdlem64 46199 fourierdlem81 46216 fourierdlem102 46237 fourierdlem103 46238 fourierdlem104 46239 fourierdlem114 46249 etransclem46 46309 |
| Copyright terms: Public domain | W3C validator |