| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ubicc2 | Structured version Visualization version GIF version | ||
| Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
| Ref | Expression |
|---|---|
| ubicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1138 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
| 2 | simp3 1139 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 3 | xrleid 13193 | . . 3 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
| 4 | 3 | 3ad2ant2 1135 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
| 5 | elicc1 13431 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) | |
| 6 | 5 | 3adant3 1133 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
| 7 | 1, 2, 4, 6 | mpbir3and 1343 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5143 (class class class)co 7431 ℝ*cxr 11294 ≤ cle 11296 [,]cicc 13390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-icc 13394 |
| This theorem is referenced by: xnn0xrge0 13546 iccpnfcnv 24975 oprpiece1res2 24983 ivthlem2 25487 ivth2 25490 ivthle 25491 ivthle2 25492 dyadmaxlem 25632 cmvth 26029 cmvthOLD 26030 mvth 26031 dvlip 26032 c1liplem1 26035 dvgt0lem1 26041 lhop1lem 26052 dvcnvrelem1 26056 dvcvx 26059 dvfsumle 26060 dvfsumleOLD 26061 dvfsumge 26062 dvfsumabs 26063 dvfsumlem2 26067 dvfsumlem2OLD 26068 ftc2 26085 ftc2ditglem 26086 itgparts 26088 itgsubstlem 26089 itgpowd 26091 efcvx 26493 pige3ALT 26562 cos0pilt1 26574 logccv 26705 loglesqrt 26804 pntlem3 27653 eliccioo 32913 xrge0iifcnv 33932 lmxrge0 33951 esumpinfval 34074 hashf2 34085 esumcvg 34087 ftc2re 34613 cvmliftlem7 35296 cvmliftlem10 35299 ivthALT 36336 ftc2nc 37709 areacirc 37720 iccintsng 45536 pnfel0pnf 45541 limcicciooub 45652 icccncfext 45902 dvbdfbdioolem1 45943 itgsin0pilem1 45965 itgcoscmulx 45984 itgsincmulx 45989 itgsubsticc 45991 fourierdlem20 46142 fourierdlem54 46175 fourierdlem64 46185 fourierdlem81 46202 fourierdlem102 46223 fourierdlem103 46224 fourierdlem104 46225 fourierdlem114 46235 etransclem46 46295 |
| Copyright terms: Public domain | W3C validator |