MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubicc2 Structured version   Visualization version   GIF version

Theorem ubicc2 13365
Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
Assertion
Ref Expression
ubicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))

Proof of Theorem ubicc2
StepHypRef Expression
1 simp2 1137 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
2 simp3 1138 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
3 xrleid 13050 . . 3 (𝐵 ∈ ℝ*𝐵𝐵)
433ad2ant2 1134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
5 elicc1 13289 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
653adant3 1132 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
71, 2, 4, 6mpbir3and 1343 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2111   class class class wbr 5089  (class class class)co 7346  *cxr 11145  cle 11147  [,]cicc 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-icc 13252
This theorem is referenced by:  xnn0xrge0  13406  iccpnfcnv  24869  oprpiece1res2  24877  ivthlem2  25380  ivth2  25383  ivthle  25384  ivthle2  25385  dyadmaxlem  25525  cmvth  25922  cmvthOLD  25923  mvth  25924  dvlip  25925  c1liplem1  25928  dvgt0lem1  25934  lhop1lem  25945  dvcnvrelem1  25949  dvcvx  25952  dvfsumle  25953  dvfsumleOLD  25954  dvfsumge  25955  dvfsumabs  25956  dvfsumlem2  25960  dvfsumlem2OLD  25961  ftc2  25978  ftc2ditglem  25979  itgparts  25981  itgsubstlem  25982  itgpowd  25984  efcvx  26386  pige3ALT  26456  cos0pilt1  26468  logccv  26599  loglesqrt  26698  pntlem3  27547  eliccioo  32911  xrge0iifcnv  33946  lmxrge0  33965  esumpinfval  34086  hashf2  34097  esumcvg  34099  ftc2re  34611  cvmliftlem7  35335  cvmliftlem10  35338  ivthALT  36377  ftc2nc  37750  areacirc  37761  iccintsng  45571  pnfel0pnf  45576  limcicciooub  45683  icccncfext  45933  dvbdfbdioolem1  45974  itgsin0pilem1  45996  itgcoscmulx  46015  itgsincmulx  46020  itgsubsticc  46022  fourierdlem20  46173  fourierdlem54  46206  fourierdlem64  46216  fourierdlem81  46233  fourierdlem102  46254  fourierdlem103  46255  fourierdlem104  46256  fourierdlem114  46266  etransclem46  46326
  Copyright terms: Public domain W3C validator