| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ubicc2 | Structured version Visualization version GIF version | ||
| Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) |
| Ref | Expression |
|---|---|
| ubicc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
| 2 | simp3 1138 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 3 | xrleid 13118 | . . 3 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
| 4 | 3 | 3ad2ant2 1134 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
| 5 | elicc1 13357 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) | |
| 6 | 5 | 3adant3 1132 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
| 7 | 1, 2, 4, 6 | mpbir3and 1343 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝ*cxr 11214 ≤ cle 11216 [,]cicc 13316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-icc 13320 |
| This theorem is referenced by: xnn0xrge0 13474 iccpnfcnv 24849 oprpiece1res2 24857 ivthlem2 25360 ivth2 25363 ivthle 25364 ivthle2 25365 dyadmaxlem 25505 cmvth 25902 cmvthOLD 25903 mvth 25904 dvlip 25905 c1liplem1 25908 dvgt0lem1 25914 lhop1lem 25925 dvcnvrelem1 25929 dvcvx 25932 dvfsumle 25933 dvfsumleOLD 25934 dvfsumge 25935 dvfsumabs 25936 dvfsumlem2 25940 dvfsumlem2OLD 25941 ftc2 25958 ftc2ditglem 25959 itgparts 25961 itgsubstlem 25962 itgpowd 25964 efcvx 26366 pige3ALT 26436 cos0pilt1 26448 logccv 26579 loglesqrt 26678 pntlem3 27527 eliccioo 32858 xrge0iifcnv 33930 lmxrge0 33949 esumpinfval 34070 hashf2 34081 esumcvg 34083 ftc2re 34596 cvmliftlem7 35285 cvmliftlem10 35288 ivthALT 36330 ftc2nc 37703 areacirc 37714 iccintsng 45528 pnfel0pnf 45533 limcicciooub 45642 icccncfext 45892 dvbdfbdioolem1 45933 itgsin0pilem1 45955 itgcoscmulx 45974 itgsincmulx 45979 itgsubsticc 45981 fourierdlem20 46132 fourierdlem54 46165 fourierdlem64 46175 fourierdlem81 46192 fourierdlem102 46213 fourierdlem103 46214 fourierdlem104 46215 fourierdlem114 46225 etransclem46 46285 |
| Copyright terms: Public domain | W3C validator |