MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubicc2 Structured version   Visualization version   GIF version

Theorem ubicc2 13197
Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
Assertion
Ref Expression
ubicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))

Proof of Theorem ubicc2
StepHypRef Expression
1 simp2 1136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
2 simp3 1137 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
3 xrleid 12885 . . 3 (𝐵 ∈ ℝ*𝐵𝐵)
433ad2ant2 1133 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
5 elicc1 13123 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
653adant3 1131 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
71, 2, 4, 6mpbir3and 1341 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  *cxr 11008  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-icc 13086
This theorem is referenced by:  xnn0xrge0  13238  iccpnfcnv  24107  oprpiece1res2  24115  ivthlem2  24616  ivth2  24619  ivthle  24620  ivthle2  24621  dyadmaxlem  24761  cmvth  25155  mvth  25156  dvlip  25157  c1liplem1  25160  dvgt0lem1  25166  lhop1lem  25177  dvcnvrelem1  25181  dvcvx  25184  dvfsumle  25185  dvfsumge  25186  dvfsumabs  25187  dvfsumlem2  25191  ftc2  25208  ftc2ditglem  25209  itgparts  25211  itgsubstlem  25212  itgpowd  25214  efcvx  25608  pige3ALT  25676  cos0pilt1  25688  logccv  25818  loglesqrt  25911  pntlem3  26757  eliccioo  31205  xrge0iifcnv  31883  lmxrge0  31902  esumpinfval  32041  hashf2  32052  esumcvg  32054  ftc2re  32578  cvmliftlem7  33253  cvmliftlem10  33256  ivthALT  34524  ftc2nc  35859  areacirc  35870  iccintsng  43061  pnfel0pnf  43066  limcicciooub  43178  icccncfext  43428  dvbdfbdioolem1  43469  itgsin0pilem1  43491  itgcoscmulx  43510  itgsincmulx  43515  itgsubsticc  43517  fourierdlem20  43668  fourierdlem54  43701  fourierdlem64  43711  fourierdlem81  43728  fourierdlem102  43749  fourierdlem103  43750  fourierdlem104  43751  fourierdlem114  43761  etransclem46  43821
  Copyright terms: Public domain W3C validator