MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubicc2 Structured version   Visualization version   GIF version

Theorem ubicc2 13368
Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
Assertion
Ref Expression
ubicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))

Proof of Theorem ubicc2
StepHypRef Expression
1 simp2 1137 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
2 simp3 1138 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
3 xrleid 13053 . . 3 (𝐵 ∈ ℝ*𝐵𝐵)
433ad2ant2 1134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
5 elicc1 13292 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
653adant3 1132 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
71, 2, 4, 6mpbir3and 1343 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2109   class class class wbr 5092  (class class class)co 7349  *cxr 11148  cle 11150  [,]cicc 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-icc 13255
This theorem is referenced by:  xnn0xrge0  13409  iccpnfcnv  24840  oprpiece1res2  24848  ivthlem2  25351  ivth2  25354  ivthle  25355  ivthle2  25356  dyadmaxlem  25496  cmvth  25893  cmvthOLD  25894  mvth  25895  dvlip  25896  c1liplem1  25899  dvgt0lem1  25905  lhop1lem  25916  dvcnvrelem1  25920  dvcvx  25923  dvfsumle  25924  dvfsumleOLD  25925  dvfsumge  25926  dvfsumabs  25927  dvfsumlem2  25931  dvfsumlem2OLD  25932  ftc2  25949  ftc2ditglem  25950  itgparts  25952  itgsubstlem  25953  itgpowd  25955  efcvx  26357  pige3ALT  26427  cos0pilt1  26439  logccv  26570  loglesqrt  26669  pntlem3  27518  eliccioo  32871  xrge0iifcnv  33900  lmxrge0  33919  esumpinfval  34040  hashf2  34051  esumcvg  34053  ftc2re  34566  cvmliftlem7  35264  cvmliftlem10  35267  ivthALT  36309  ftc2nc  37682  areacirc  37693  iccintsng  45504  pnfel0pnf  45509  limcicciooub  45618  icccncfext  45868  dvbdfbdioolem1  45909  itgsin0pilem1  45931  itgcoscmulx  45950  itgsincmulx  45955  itgsubsticc  45957  fourierdlem20  46108  fourierdlem54  46141  fourierdlem64  46151  fourierdlem81  46168  fourierdlem102  46189  fourierdlem103  46190  fourierdlem104  46191  fourierdlem114  46201  etransclem46  46261
  Copyright terms: Public domain W3C validator