MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubicc2 Structured version   Visualization version   GIF version

Theorem ubicc2 13502
Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
Assertion
Ref Expression
ubicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))

Proof of Theorem ubicc2
StepHypRef Expression
1 simp2 1136 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
2 simp3 1137 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
3 xrleid 13190 . . 3 (𝐵 ∈ ℝ*𝐵𝐵)
433ad2ant2 1133 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
5 elicc1 13428 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
653adant3 1131 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
71, 2, 4, 6mpbir3and 1341 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2106   class class class wbr 5148  (class class class)co 7431  *cxr 11292  cle 11294  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-icc 13391
This theorem is referenced by:  xnn0xrge0  13543  iccpnfcnv  24989  oprpiece1res2  24997  ivthlem2  25501  ivth2  25504  ivthle  25505  ivthle2  25506  dyadmaxlem  25646  cmvth  26044  cmvthOLD  26045  mvth  26046  dvlip  26047  c1liplem1  26050  dvgt0lem1  26056  lhop1lem  26067  dvcnvrelem1  26071  dvcvx  26074  dvfsumle  26075  dvfsumleOLD  26076  dvfsumge  26077  dvfsumabs  26078  dvfsumlem2  26082  dvfsumlem2OLD  26083  ftc2  26100  ftc2ditglem  26101  itgparts  26103  itgsubstlem  26104  itgpowd  26106  efcvx  26508  pige3ALT  26577  cos0pilt1  26589  logccv  26720  loglesqrt  26819  pntlem3  27668  eliccioo  32898  xrge0iifcnv  33894  lmxrge0  33913  esumpinfval  34054  hashf2  34065  esumcvg  34067  ftc2re  34592  cvmliftlem7  35276  cvmliftlem10  35279  ivthALT  36318  ftc2nc  37689  areacirc  37700  iccintsng  45476  pnfel0pnf  45481  limcicciooub  45593  icccncfext  45843  dvbdfbdioolem1  45884  itgsin0pilem1  45906  itgcoscmulx  45925  itgsincmulx  45930  itgsubsticc  45932  fourierdlem20  46083  fourierdlem54  46116  fourierdlem64  46126  fourierdlem81  46143  fourierdlem102  46164  fourierdlem103  46165  fourierdlem104  46166  fourierdlem114  46176  etransclem46  46236
  Copyright terms: Public domain W3C validator