MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubicc2 Structured version   Visualization version   GIF version

Theorem ubicc2 13525
Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
Assertion
Ref Expression
ubicc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))

Proof of Theorem ubicc2
StepHypRef Expression
1 simp2 1137 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
2 simp3 1138 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
3 xrleid 13213 . . 3 (𝐵 ∈ ℝ*𝐵𝐵)
433ad2ant2 1134 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
5 elicc1 13451 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
653adant3 1132 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵 ∈ (𝐴[,]𝐵) ↔ (𝐵 ∈ ℝ*𝐴𝐵𝐵𝐵)))
71, 2, 4, 6mpbir3and 1342 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  *cxr 11323  cle 11325  [,]cicc 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-icc 13414
This theorem is referenced by:  xnn0xrge0  13566  iccpnfcnv  24994  oprpiece1res2  25002  ivthlem2  25506  ivth2  25509  ivthle  25510  ivthle2  25511  dyadmaxlem  25651  cmvth  26049  cmvthOLD  26050  mvth  26051  dvlip  26052  c1liplem1  26055  dvgt0lem1  26061  lhop1lem  26072  dvcnvrelem1  26076  dvcvx  26079  dvfsumle  26080  dvfsumleOLD  26081  dvfsumge  26082  dvfsumabs  26083  dvfsumlem2  26087  dvfsumlem2OLD  26088  ftc2  26105  ftc2ditglem  26106  itgparts  26108  itgsubstlem  26109  itgpowd  26111  efcvx  26511  pige3ALT  26580  cos0pilt1  26592  logccv  26723  loglesqrt  26822  pntlem3  27671  eliccioo  32895  xrge0iifcnv  33879  lmxrge0  33898  esumpinfval  34037  hashf2  34048  esumcvg  34050  ftc2re  34575  cvmliftlem7  35259  cvmliftlem10  35262  ivthALT  36301  ftc2nc  37662  areacirc  37673  iccintsng  45441  pnfel0pnf  45446  limcicciooub  45558  icccncfext  45808  dvbdfbdioolem1  45849  itgsin0pilem1  45871  itgcoscmulx  45890  itgsincmulx  45895  itgsubsticc  45897  fourierdlem20  46048  fourierdlem54  46081  fourierdlem64  46091  fourierdlem81  46108  fourierdlem102  46129  fourierdlem103  46130  fourierdlem104  46131  fourierdlem114  46141  etransclem46  46201
  Copyright terms: Public domain W3C validator