MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resghm Structured version   Visualization version   GIF version

Theorem resghm 18366
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resghm ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))

Proof of Theorem resghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . 2 (Base‘𝑈) = (Base‘𝑈)
2 eqid 2798 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2798 . 2 (+g𝑈) = (+g𝑈)
4 eqid 2798 . 2 (+g𝑇) = (+g𝑇)
5 resghm.u . . . 4 𝑈 = (𝑆s 𝑋)
65subggrp 18274 . . 3 (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp)
76adantl 485 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp)
8 ghmgrp2 18353 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
98adantr 484 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp)
10 eqid 2798 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
1110, 2ghmf 18354 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1210subgss 18272 . . . 4 (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
13 fssres 6518 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1411, 12, 13syl2an 598 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1512adantl 485 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
165, 10ressbas2 16547 . . . . 5 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1715, 16syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈))
1817feq2d 6473 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1914, 18mpbid 235 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
20 eleq2 2878 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑎𝑋𝑎 ∈ (Base‘𝑈)))
21 eleq2 2878 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑈)))
2220, 21anbi12d 633 . . . . 5 (𝑋 = (Base‘𝑈) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2317, 22syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2423biimpar 481 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎𝑋𝑏𝑋))
25 simpll 766 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2615sselda 3915 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎𝑋) → 𝑎 ∈ (Base‘𝑆))
2726adantrr 716 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (Base‘𝑆))
2815sselda 3915 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏𝑋) → 𝑏 ∈ (Base‘𝑆))
2928adantrl 715 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2798 . . . . . 6 (+g𝑆) = (+g𝑆)
3110, 30, 4ghmlin 18355 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3225, 27, 29, 31syl3anc 1368 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
335, 30ressplusg 16604 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑆) → (+g𝑆) = (+g𝑈))
3433ad2antlr 726 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (+g𝑆) = (+g𝑈))
3534oveqd 7152 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) = (𝑎(+g𝑈)𝑏))
3635fveq2d 6649 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)))
3730subgcl 18281 . . . . . . . 8 ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎𝑋𝑏𝑋) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
38373expb 1117 . . . . . . 7 ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
3938adantll 713 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
4039fvresd 6665 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
4136, 40eqtr3d 2835 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
42 fvres 6664 . . . . . 6 (𝑎𝑋 → ((𝐹𝑋)‘𝑎) = (𝐹𝑎))
43 fvres 6664 . . . . . 6 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4442, 43oveqan12d 7154 . . . . 5 ((𝑎𝑋𝑏𝑋) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4544adantl 485 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4632, 41, 453eqtr4d 2843 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
4724, 46syldan 594 . 2 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
481, 2, 3, 4, 7, 9, 19, 47isghmd 18359 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3881  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  +gcplusg 16557  Grpcgrp 18095  SubGrpcsubg 18265   GrpHom cghm 18347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-subg 18268  df-ghm 18348
This theorem is referenced by:  ghmima  18371  resrhm  19557  reslmhm  19817  dimkerim  31111
  Copyright terms: Public domain W3C validator