MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resghm Structured version   Visualization version   GIF version

Theorem resghm 19171
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resghm ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))

Proof of Theorem resghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Base‘𝑈) = (Base‘𝑈)
2 eqid 2730 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2730 . 2 (+g𝑈) = (+g𝑈)
4 eqid 2730 . 2 (+g𝑇) = (+g𝑇)
5 resghm.u . . . 4 𝑈 = (𝑆s 𝑋)
65subggrp 19068 . . 3 (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp)
76adantl 481 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp)
8 ghmgrp2 19158 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
98adantr 480 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp)
10 eqid 2730 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
1110, 2ghmf 19159 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1210subgss 19066 . . . 4 (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
13 fssres 6729 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1411, 12, 13syl2an 596 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1512adantl 481 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
165, 10ressbas2 17215 . . . . 5 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1715, 16syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈))
1817feq2d 6675 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1914, 18mpbid 232 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
20 eleq2 2818 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑎𝑋𝑎 ∈ (Base‘𝑈)))
21 eleq2 2818 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑈)))
2220, 21anbi12d 632 . . . . 5 (𝑋 = (Base‘𝑈) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2317, 22syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2423biimpar 477 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎𝑋𝑏𝑋))
25 simpll 766 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2615sselda 3949 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎𝑋) → 𝑎 ∈ (Base‘𝑆))
2726adantrr 717 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (Base‘𝑆))
2815sselda 3949 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏𝑋) → 𝑏 ∈ (Base‘𝑆))
2928adantrl 716 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2730 . . . . . 6 (+g𝑆) = (+g𝑆)
3110, 30, 4ghmlin 19160 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3225, 27, 29, 31syl3anc 1373 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
335, 30ressplusg 17261 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑆) → (+g𝑆) = (+g𝑈))
3433ad2antlr 727 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (+g𝑆) = (+g𝑈))
3534oveqd 7407 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) = (𝑎(+g𝑈)𝑏))
3635fveq2d 6865 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)))
3730subgcl 19075 . . . . . . . 8 ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎𝑋𝑏𝑋) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
38373expb 1120 . . . . . . 7 ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
3938adantll 714 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
4039fvresd 6881 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
4136, 40eqtr3d 2767 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
42 fvres 6880 . . . . . 6 (𝑎𝑋 → ((𝐹𝑋)‘𝑎) = (𝐹𝑎))
43 fvres 6880 . . . . . 6 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4442, 43oveqan12d 7409 . . . . 5 ((𝑎𝑋𝑏𝑋) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4544adantl 481 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4632, 41, 453eqtr4d 2775 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
4724, 46syldan 591 . 2 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
481, 2, 3, 4, 7, 9, 19, 47isghmd 19164 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  +gcplusg 17227  Grpcgrp 18872  SubGrpcsubg 19059   GrpHom cghm 19151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-subg 19062  df-ghm 19152
This theorem is referenced by:  ghmima  19176  resrhm  20517  reslmhm  20966  dimkerim  33630
  Copyright terms: Public domain W3C validator