MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resghm Structured version   Visualization version   GIF version

Theorem resghm 18850
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resghm ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))

Proof of Theorem resghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝑈) = (Base‘𝑈)
2 eqid 2738 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2738 . 2 (+g𝑈) = (+g𝑈)
4 eqid 2738 . 2 (+g𝑇) = (+g𝑇)
5 resghm.u . . . 4 𝑈 = (𝑆s 𝑋)
65subggrp 18758 . . 3 (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp)
76adantl 482 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp)
8 ghmgrp2 18837 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
98adantr 481 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp)
10 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
1110, 2ghmf 18838 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1210subgss 18756 . . . 4 (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
13 fssres 6640 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1411, 12, 13syl2an 596 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1512adantl 482 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
165, 10ressbas2 16949 . . . . 5 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1715, 16syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈))
1817feq2d 6586 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1914, 18mpbid 231 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
20 eleq2 2827 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑎𝑋𝑎 ∈ (Base‘𝑈)))
21 eleq2 2827 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑈)))
2220, 21anbi12d 631 . . . . 5 (𝑋 = (Base‘𝑈) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2317, 22syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2423biimpar 478 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎𝑋𝑏𝑋))
25 simpll 764 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2615sselda 3921 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎𝑋) → 𝑎 ∈ (Base‘𝑆))
2726adantrr 714 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (Base‘𝑆))
2815sselda 3921 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏𝑋) → 𝑏 ∈ (Base‘𝑆))
2928adantrl 713 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2738 . . . . . 6 (+g𝑆) = (+g𝑆)
3110, 30, 4ghmlin 18839 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3225, 27, 29, 31syl3anc 1370 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
335, 30ressplusg 17000 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑆) → (+g𝑆) = (+g𝑈))
3433ad2antlr 724 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (+g𝑆) = (+g𝑈))
3534oveqd 7292 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) = (𝑎(+g𝑈)𝑏))
3635fveq2d 6778 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)))
3730subgcl 18765 . . . . . . . 8 ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎𝑋𝑏𝑋) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
38373expb 1119 . . . . . . 7 ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
3938adantll 711 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
4039fvresd 6794 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
4136, 40eqtr3d 2780 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
42 fvres 6793 . . . . . 6 (𝑎𝑋 → ((𝐹𝑋)‘𝑎) = (𝐹𝑎))
43 fvres 6793 . . . . . 6 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4442, 43oveqan12d 7294 . . . . 5 ((𝑎𝑋𝑏𝑋) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4544adantl 482 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4632, 41, 453eqtr4d 2788 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
4724, 46syldan 591 . 2 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
481, 2, 3, 4, 7, 9, 19, 47isghmd 18843 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  +gcplusg 16962  Grpcgrp 18577  SubGrpcsubg 18749   GrpHom cghm 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-subg 18752  df-ghm 18832
This theorem is referenced by:  ghmima  18855  resrhm  20053  reslmhm  20314  dimkerim  31708
  Copyright terms: Public domain W3C validator