MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resghm Structured version   Visualization version   GIF version

Theorem resghm 19146
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resghm ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))

Proof of Theorem resghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘𝑈) = (Base‘𝑈)
2 eqid 2729 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2729 . 2 (+g𝑈) = (+g𝑈)
4 eqid 2729 . 2 (+g𝑇) = (+g𝑇)
5 resghm.u . . . 4 𝑈 = (𝑆s 𝑋)
65subggrp 19043 . . 3 (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp)
76adantl 481 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp)
8 ghmgrp2 19133 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
98adantr 480 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp)
10 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
1110, 2ghmf 19134 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1210subgss 19041 . . . 4 (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
13 fssres 6708 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1411, 12, 13syl2an 596 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1512adantl 481 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
165, 10ressbas2 17184 . . . . 5 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1715, 16syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈))
1817feq2d 6654 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1914, 18mpbid 232 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
20 eleq2 2817 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑎𝑋𝑎 ∈ (Base‘𝑈)))
21 eleq2 2817 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑈)))
2220, 21anbi12d 632 . . . . 5 (𝑋 = (Base‘𝑈) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2317, 22syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2423biimpar 477 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎𝑋𝑏𝑋))
25 simpll 766 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2615sselda 3943 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎𝑋) → 𝑎 ∈ (Base‘𝑆))
2726adantrr 717 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (Base‘𝑆))
2815sselda 3943 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏𝑋) → 𝑏 ∈ (Base‘𝑆))
2928adantrl 716 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2729 . . . . . 6 (+g𝑆) = (+g𝑆)
3110, 30, 4ghmlin 19135 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3225, 27, 29, 31syl3anc 1373 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
335, 30ressplusg 17230 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑆) → (+g𝑆) = (+g𝑈))
3433ad2antlr 727 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (+g𝑆) = (+g𝑈))
3534oveqd 7386 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) = (𝑎(+g𝑈)𝑏))
3635fveq2d 6844 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)))
3730subgcl 19050 . . . . . . . 8 ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎𝑋𝑏𝑋) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
38373expb 1120 . . . . . . 7 ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
3938adantll 714 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
4039fvresd 6860 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
4136, 40eqtr3d 2766 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
42 fvres 6859 . . . . . 6 (𝑎𝑋 → ((𝐹𝑋)‘𝑎) = (𝐹𝑎))
43 fvres 6859 . . . . . 6 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4442, 43oveqan12d 7388 . . . . 5 ((𝑎𝑋𝑏𝑋) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4544adantl 481 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4632, 41, 453eqtr4d 2774 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
4724, 46syldan 591 . 2 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
481, 2, 3, 4, 7, 9, 19, 47isghmd 19139 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3911  cres 5633  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  +gcplusg 17196  Grpcgrp 18847  SubGrpcsubg 19034   GrpHom cghm 19126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-subg 19037  df-ghm 19127
This theorem is referenced by:  ghmima  19151  resrhm  20521  reslmhm  20991  dimkerim  33616
  Copyright terms: Public domain W3C validator