MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resghm Structured version   Visualization version   GIF version

Theorem resghm 19108
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u 𝑈 = (𝑆s 𝑋)
Assertion
Ref Expression
resghm ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))

Proof of Theorem resghm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (Base‘𝑈) = (Base‘𝑈)
2 eqid 2733 . 2 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2733 . 2 (+g𝑈) = (+g𝑈)
4 eqid 2733 . 2 (+g𝑇) = (+g𝑇)
5 resghm.u . . . 4 𝑈 = (𝑆s 𝑋)
65subggrp 19009 . . 3 (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp)
76adantl 483 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp)
8 ghmgrp2 19095 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
98adantr 482 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp)
10 eqid 2733 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
1110, 2ghmf 19096 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
1210subgss 19007 . . . 4 (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆))
13 fssres 6758 . . . 4 ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1411, 12, 13syl2an 597 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):𝑋⟶(Base‘𝑇))
1512adantl 483 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆))
165, 10ressbas2 17182 . . . . 5 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈))
1715, 16syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈))
1817feq2d 6704 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇)))
1914, 18mpbid 231 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋):(Base‘𝑈)⟶(Base‘𝑇))
20 eleq2 2823 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑎𝑋𝑎 ∈ (Base‘𝑈)))
21 eleq2 2823 . . . . . 6 (𝑋 = (Base‘𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑈)))
2220, 21anbi12d 632 . . . . 5 (𝑋 = (Base‘𝑈) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2317, 22syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎𝑋𝑏𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))))
2423biimpar 479 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎𝑋𝑏𝑋))
25 simpll 766 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2615sselda 3983 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎𝑋) → 𝑎 ∈ (Base‘𝑆))
2726adantrr 716 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑎 ∈ (Base‘𝑆))
2815sselda 3983 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏𝑋) → 𝑏 ∈ (Base‘𝑆))
2928adantrl 715 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2733 . . . . . 6 (+g𝑆) = (+g𝑆)
3110, 30, 4ghmlin 19097 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
3225, 27, 29, 31syl3anc 1372 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝐹‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
335, 30ressplusg 17235 . . . . . . . 8 (𝑋 ∈ (SubGrp‘𝑆) → (+g𝑆) = (+g𝑈))
3433ad2antlr 726 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (+g𝑆) = (+g𝑈))
3534oveqd 7426 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) = (𝑎(+g𝑈)𝑏))
3635fveq2d 6896 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)))
3730subgcl 19016 . . . . . . . 8 ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎𝑋𝑏𝑋) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
38373expb 1121 . . . . . . 7 ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
3938adantll 713 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑎(+g𝑆)𝑏) ∈ 𝑋)
4039fvresd 6912 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑆)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
4136, 40eqtr3d 2775 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (𝐹‘(𝑎(+g𝑆)𝑏)))
42 fvres 6911 . . . . . 6 (𝑎𝑋 → ((𝐹𝑋)‘𝑎) = (𝐹𝑎))
43 fvres 6911 . . . . . 6 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4442, 43oveqan12d 7428 . . . . 5 ((𝑎𝑋𝑏𝑋) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4544adantl 483 . . . 4 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)) = ((𝐹𝑎)(+g𝑇)(𝐹𝑏)))
4632, 41, 453eqtr4d 2783 . . 3 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎𝑋𝑏𝑋)) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
4724, 46syldan 592 . 2 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹𝑋)‘(𝑎(+g𝑈)𝑏)) = (((𝐹𝑋)‘𝑎)(+g𝑇)((𝐹𝑋)‘𝑏)))
481, 2, 3, 4, 7, 9, 19, 47isghmd 19101 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑈 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wss 3949  cres 5679  wf 6540  cfv 6544  (class class class)co 7409  Basecbs 17144  s cress 17173  +gcplusg 17197  Grpcgrp 18819  SubGrpcsubg 19000   GrpHom cghm 19089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-subg 19003  df-ghm 19090
This theorem is referenced by:  ghmima  19113  resrhm  20348  reslmhm  20663  dimkerim  32743
  Copyright terms: Public domain W3C validator