| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. 2
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 2 | | eqid 2737 |
. 2
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 3 | | eqid 2737 |
. 2
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 4 | | eqid 2737 |
. 2
⊢
(+g‘𝑇) = (+g‘𝑇) |
| 5 | | resghm.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑋) |
| 6 | 5 | subggrp 19147 |
. . 3
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑈 ∈ Grp) |
| 7 | 6 | adantl 481 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑈 ∈ Grp) |
| 8 | | ghmgrp2 19237 |
. . 3
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) |
| 9 | 8 | adantr 480 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑇 ∈ Grp) |
| 10 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 11 | 10, 2 | ghmf 19238 |
. . . 4
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
| 12 | 10 | subgss 19145 |
. . . 4
⊢ (𝑋 ∈ (SubGrp‘𝑆) → 𝑋 ⊆ (Base‘𝑆)) |
| 13 | | fssres 6774 |
. . . 4
⊢ ((𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑋 ⊆ (Base‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
| 14 | 11, 12, 13 | syl2an 596 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇)) |
| 15 | 12 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 ⊆ (Base‘𝑆)) |
| 16 | 5, 10 | ressbas2 17283 |
. . . . 5
⊢ (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑈)) |
| 17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → 𝑋 = (Base‘𝑈)) |
| 18 | 17 | feq2d 6722 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝐹 ↾ 𝑋):𝑋⟶(Base‘𝑇) ↔ (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇))) |
| 19 | 14, 18 | mpbid 232 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋):(Base‘𝑈)⟶(Base‘𝑇)) |
| 20 | | eleq2 2830 |
. . . . . 6
⊢ (𝑋 = (Base‘𝑈) → (𝑎 ∈ 𝑋 ↔ 𝑎 ∈ (Base‘𝑈))) |
| 21 | | eleq2 2830 |
. . . . . 6
⊢ (𝑋 = (Base‘𝑈) → (𝑏 ∈ 𝑋 ↔ 𝑏 ∈ (Base‘𝑈))) |
| 22 | 20, 21 | anbi12d 632 |
. . . . 5
⊢ (𝑋 = (Base‘𝑈) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈)))) |
| 23 | 17, 22 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈)))) |
| 24 | 23 | biimpar 477 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) |
| 25 | | simpll 767 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 26 | 15 | sselda 3983 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ (Base‘𝑆)) |
| 27 | 26 | adantrr 717 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑎 ∈ (Base‘𝑆)) |
| 28 | 15 | sselda 3983 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ 𝑏 ∈ 𝑋) → 𝑏 ∈ (Base‘𝑆)) |
| 29 | 28 | adantrl 716 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → 𝑏 ∈ (Base‘𝑆)) |
| 30 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 31 | 10, 30, 4 | ghmlin 19239 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ (Base‘𝑆) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
| 32 | 25, 27, 29, 31 | syl3anc 1373 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝐹‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
| 33 | 5, 30 | ressplusg 17334 |
. . . . . . . 8
⊢ (𝑋 ∈ (SubGrp‘𝑆) →
(+g‘𝑆) =
(+g‘𝑈)) |
| 34 | 33 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (+g‘𝑆) = (+g‘𝑈)) |
| 35 | 34 | oveqd 7448 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) = (𝑎(+g‘𝑈)𝑏)) |
| 36 | 35 | fveq2d 6910 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑆)𝑏)) = ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏))) |
| 37 | 30 | subgcl 19154 |
. . . . . . . 8
⊢ ((𝑋 ∈ (SubGrp‘𝑆) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
| 38 | 37 | 3expb 1121 |
. . . . . . 7
⊢ ((𝑋 ∈ (SubGrp‘𝑆) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
| 39 | 38 | adantll 714 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝑋) |
| 40 | 39 | fvresd 6926 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑆)𝑏)) = (𝐹‘(𝑎(+g‘𝑆)𝑏))) |
| 41 | 36, 40 | eqtr3d 2779 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (𝐹‘(𝑎(+g‘𝑆)𝑏))) |
| 42 | | fvres 6925 |
. . . . . 6
⊢ (𝑎 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑎) = (𝐹‘𝑎)) |
| 43 | | fvres 6925 |
. . . . . 6
⊢ (𝑏 ∈ 𝑋 → ((𝐹 ↾ 𝑋)‘𝑏) = (𝐹‘𝑏)) |
| 44 | 42, 43 | oveqan12d 7450 |
. . . . 5
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) → (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
| 45 | 44 | adantl 481 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏)) = ((𝐹‘𝑎)(+g‘𝑇)(𝐹‘𝑏))) |
| 46 | 32, 41, 45 | 3eqtr4d 2787 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏))) |
| 47 | 24, 46 | syldan 591 |
. 2
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) ∧ (𝑎 ∈ (Base‘𝑈) ∧ 𝑏 ∈ (Base‘𝑈))) → ((𝐹 ↾ 𝑋)‘(𝑎(+g‘𝑈)𝑏)) = (((𝐹 ↾ 𝑋)‘𝑎)(+g‘𝑇)((𝐹 ↾ 𝑋)‘𝑏))) |
| 48 | 1, 2, 3, 4, 7, 9, 19, 47 | isghmd 19243 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |