MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  padicfval Structured version   Visualization version   GIF version

Theorem padicfval 26304
Description: Value of the p-adic absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypothesis
Ref Expression
padicval.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
Assertion
Ref Expression
padicfval (𝑃 ∈ ℙ → (𝐽𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))))
Distinct variable group:   𝑥,𝑞,𝑃
Allowed substitution hints:   𝐽(𝑥,𝑞)

Proof of Theorem padicfval
StepHypRef Expression
1 id 22 . . . . 5 (𝑞 = 𝑃𝑞 = 𝑃)
2 oveq1 7162 . . . . . 6 (𝑞 = 𝑃 → (𝑞 pCnt 𝑥) = (𝑃 pCnt 𝑥))
32negeqd 10923 . . . . 5 (𝑞 = 𝑃 → -(𝑞 pCnt 𝑥) = -(𝑃 pCnt 𝑥))
41, 3oveq12d 7173 . . . 4 (𝑞 = 𝑃 → (𝑞↑-(𝑞 pCnt 𝑥)) = (𝑃↑-(𝑃 pCnt 𝑥)))
54ifeq2d 4443 . . 3 (𝑞 = 𝑃 → if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))) = if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥))))
65mpteq2dv 5131 . 2 (𝑞 = 𝑃 → (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))))
7 padicval.j . 2 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
8 qex 12406 . . 3 ℚ ∈ V
98mptex 6982 . 2 (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))) ∈ V
106, 7, 9fvmpt 6763 1 (𝑃 ∈ ℙ → (𝐽𝑃) = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  ifcif 4423  cmpt 5115  cfv 6339  (class class class)co 7155  0cc0 10580  -cneg 10914  cq 12393  cexp 13484  cprime 16072   pCnt cpc 16233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-z 12026  df-q 12394
This theorem is referenced by:  padicval  26305  padicabvf  26319
  Copyright terms: Public domain W3C validator