| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ma1repveval | Structured version Visualization version GIF version | ||
| Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| Ref | Expression |
|---|---|
| marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| ma1repvcl.1 | ⊢ 1 = (1r‘𝐴) |
| mulmarep1el.0 | ⊢ 0 = (0g‘𝑅) |
| mulmarep1el.e | ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
| Ref | Expression |
|---|---|
| ma1repveval | ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | marepvcl.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | marepvcl.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | 1, 2 | matrcl 22416 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 5 | ma1repvcl.1 | . . . . . . . . . 10 ⊢ 1 = (1r‘𝐴) | |
| 6 | 1 | fveq2i 6909 | . . . . . . . . . 10 ⊢ (1r‘𝐴) = (1r‘(𝑁 Mat 𝑅)) |
| 7 | 5, 6 | eqtri 2765 | . . . . . . . . 9 ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) |
| 8 | 1, 2, 7 | mat1bas 22455 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ 𝐵) |
| 9 | 8 | expcom 413 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
| 10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
| 11 | 10 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
| 12 | 11 | impcom 407 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 1 ∈ 𝐵) |
| 13 | simpr2 1196 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝐶 ∈ 𝑉) | |
| 14 | simpr3 1197 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝐾 ∈ 𝑁) | |
| 15 | 12, 13, 14 | 3jca 1129 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) |
| 16 | mulmarep1el.e | . . . . . 6 ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)) |
| 18 | 17 | oveqd 7448 | . . . 4 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽)) |
| 19 | eqid 2737 | . . . . 5 ⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) | |
| 20 | marepvcl.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 21 | 1, 2, 19, 20 | marepveval 22574 | . . . 4 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
| 22 | 18, 21 | eqtrd 2777 | . . 3 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
| 23 | 15, 22 | stoic3 1776 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
| 24 | eqid 2737 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 25 | mulmarep1el.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 26 | 4 | 3ad2ant1 1134 | . . . . . 6 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 27 | 26 | 3ad2ant2 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
| 28 | simp1 1137 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 29 | simp3l 1202 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
| 30 | simp3r 1203 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
| 31 | 1, 24, 25, 27, 28, 29, 30, 5 | mat1ov 22454 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r‘𝑅), 0 )) |
| 32 | eqcom 2744 | . . . . . 6 ⊢ (𝐼 = 𝐽 ↔ 𝐽 = 𝐼) | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 = 𝐽 ↔ 𝐽 = 𝐼)) |
| 34 | 33 | ifbid 4549 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐼 = 𝐽, (1r‘𝑅), 0 ) = if(𝐽 = 𝐼, (1r‘𝑅), 0 )) |
| 35 | 31, 34 | eqtrd 2777 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐽 = 𝐼, (1r‘𝑅), 0 )) |
| 36 | 35 | ifeq2d 4546 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽)) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
| 37 | 23, 36 | eqtrd 2777 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ifcif 4525 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 Fincfn 8985 Basecbs 17247 0gc0g 17484 1rcur 20178 Ringcrg 20230 Mat cmat 22411 matRepV cmatrepV 22563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-subrg 20570 df-lmod 20860 df-lss 20930 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-mamu 22395 df-mat 22412 df-marepv 22565 |
| This theorem is referenced by: mulmarep1el 22578 1marepvmarrepid 22581 |
| Copyright terms: Public domain | W3C validator |