Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ma1repveval | Structured version Visualization version GIF version |
Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
ma1repvcl.1 | ⊢ 1 = (1r‘𝐴) |
mulmarep1el.0 | ⊢ 0 = (0g‘𝑅) |
mulmarep1el.e | ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
Ref | Expression |
---|---|
ma1repveval | ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvcl.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvcl.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21469 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | ma1repvcl.1 | . . . . . . . . . 10 ⊢ 1 = (1r‘𝐴) | |
6 | 1 | fveq2i 6759 | . . . . . . . . . 10 ⊢ (1r‘𝐴) = (1r‘(𝑁 Mat 𝑅)) |
7 | 5, 6 | eqtri 2766 | . . . . . . . . 9 ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) |
8 | 1, 2, 7 | mat1bas 21506 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ 𝐵) |
9 | 8 | expcom 413 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
11 | 10 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
12 | 11 | impcom 407 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 1 ∈ 𝐵) |
13 | simpr2 1193 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝐶 ∈ 𝑉) | |
14 | simpr3 1194 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝐾 ∈ 𝑁) | |
15 | 12, 13, 14 | 3jca 1126 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) |
16 | mulmarep1el.e | . . . . . 6 ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | |
17 | 16 | a1i 11 | . . . . 5 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)) |
18 | 17 | oveqd 7272 | . . . 4 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽)) |
19 | eqid 2738 | . . . . 5 ⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) | |
20 | marepvcl.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
21 | 1, 2, 19, 20 | marepveval 21625 | . . . 4 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
22 | 18, 21 | eqtrd 2778 | . . 3 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
23 | 15, 22 | stoic3 1780 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
24 | eqid 2738 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
25 | mulmarep1el.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
26 | 4 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
27 | 26 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
28 | simp1 1134 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
29 | simp3l 1199 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
30 | simp3r 1200 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
31 | 1, 24, 25, 27, 28, 29, 30, 5 | mat1ov 21505 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r‘𝑅), 0 )) |
32 | eqcom 2745 | . . . . . 6 ⊢ (𝐼 = 𝐽 ↔ 𝐽 = 𝐼) | |
33 | 32 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 = 𝐽 ↔ 𝐽 = 𝐼)) |
34 | 33 | ifbid 4479 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐼 = 𝐽, (1r‘𝑅), 0 ) = if(𝐽 = 𝐼, (1r‘𝑅), 0 )) |
35 | 31, 34 | eqtrd 2778 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐽 = 𝐼, (1r‘𝑅), 0 )) |
36 | 35 | ifeq2d 4476 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽)) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
37 | 23, 36 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 Basecbs 16840 0gc0g 17067 1rcur 19652 Ringcrg 19698 Mat cmat 21464 matRepV cmatrepV 21614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-mamu 21443 df-mat 21465 df-marepv 21616 |
This theorem is referenced by: mulmarep1el 21629 1marepvmarrepid 21632 |
Copyright terms: Public domain | W3C validator |