MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ma1repveval Structured version   Visualization version   GIF version

Theorem ma1repveval 21920
Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
ma1repveval ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))

Proof of Theorem ma1repveval
StepHypRef Expression
1 marepvcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 marepvcl.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 21759 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 495 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
5 ma1repvcl.1 . . . . . . . . . 10 1 = (1r𝐴)
61fveq2i 6845 . . . . . . . . . 10 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
75, 6eqtri 2764 . . . . . . . . 9 1 = (1r‘(𝑁 Mat 𝑅))
81, 2, 7mat1bas 21798 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1𝐵)
98expcom 414 . . . . . . 7 (𝑁 ∈ Fin → (𝑅 ∈ Ring → 1𝐵))
104, 9syl 17 . . . . . 6 (𝑀𝐵 → (𝑅 ∈ Ring → 1𝐵))
11103ad2ant1 1133 . . . . 5 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑅 ∈ Ring → 1𝐵))
1211impcom 408 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 1𝐵)
13 simpr2 1195 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝐶𝑉)
14 simpr3 1196 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝐾𝑁)
1512, 13, 143jca 1128 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ( 1𝐵𝐶𝑉𝐾𝑁))
16 mulmarep1el.e . . . . . 6 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
1716a1i 11 . . . . 5 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾))
1817oveqd 7374 . . . 4 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽))
19 eqid 2736 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
20 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
211, 2, 19, 20marepveval 21917 . . . 4 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
2218, 21eqtrd 2776 . . 3 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
2315, 22stoic3 1778 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
24 eqid 2736 . . . . 5 (1r𝑅) = (1r𝑅)
25 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
2643ad2ant1 1133 . . . . . 6 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
27263ad2ant2 1134 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
28 simp1 1136 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
29 simp3l 1201 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
30 simp3r 1202 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
311, 24, 25, 27, 28, 29, 30, 5mat1ov 21797 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r𝑅), 0 ))
32 eqcom 2743 . . . . . 6 (𝐼 = 𝐽𝐽 = 𝐼)
3332a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 = 𝐽𝐽 = 𝐼))
3433ifbid 4509 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐼 = 𝐽, (1r𝑅), 0 ) = if(𝐽 = 𝐼, (1r𝑅), 0 ))
3531, 34eqtrd 2776 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 1 𝐽) = if(𝐽 = 𝐼, (1r𝑅), 0 ))
3635ifeq2d 4506 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))
3723, 36eqtrd 2776 1 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  Basecbs 17083  0gc0g 17321  1rcur 19913  Ringcrg 19964   Mat cmat 21754   matRepV cmatrepV 21906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-mamu 21733  df-mat 21755  df-marepv 21908
This theorem is referenced by:  mulmarep1el  21921  1marepvmarrepid  21924
  Copyright terms: Public domain W3C validator