MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ma1repveval Structured version   Visualization version   GIF version

Theorem ma1repveval 22393
Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
ma1repveval ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))

Proof of Theorem ma1repveval
StepHypRef Expression
1 marepvcl.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
2 marepvcl.b . . . . . . . . 9 𝐵 = (Base‘𝐴)
31, 2matrcl 22232 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
5 ma1repvcl.1 . . . . . . . . . 10 1 = (1r𝐴)
61fveq2i 6894 . . . . . . . . . 10 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
75, 6eqtri 2759 . . . . . . . . 9 1 = (1r‘(𝑁 Mat 𝑅))
81, 2, 7mat1bas 22271 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1𝐵)
98expcom 413 . . . . . . 7 (𝑁 ∈ Fin → (𝑅 ∈ Ring → 1𝐵))
104, 9syl 17 . . . . . 6 (𝑀𝐵 → (𝑅 ∈ Ring → 1𝐵))
11103ad2ant1 1132 . . . . 5 ((𝑀𝐵𝐶𝑉𝐾𝑁) → (𝑅 ∈ Ring → 1𝐵))
1211impcom 407 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 1𝐵)
13 simpr2 1194 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝐶𝑉)
14 simpr3 1195 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → 𝐾𝑁)
1512, 13, 143jca 1127 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁)) → ( 1𝐵𝐶𝑉𝐾𝑁))
16 mulmarep1el.e . . . . . 6 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
1716a1i 11 . . . . 5 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾))
1817oveqd 7429 . . . 4 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽))
19 eqid 2731 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
20 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
211, 2, 19, 20marepveval 22390 . . . 4 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
2218, 21eqtrd 2771 . . 3 ((( 1𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
2315, 22stoic3 1777 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)))
24 eqid 2731 . . . . 5 (1r𝑅) = (1r𝑅)
25 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
2643ad2ant1 1132 . . . . . 6 ((𝑀𝐵𝐶𝑉𝐾𝑁) → 𝑁 ∈ Fin)
27263ad2ant2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝑁 ∈ Fin)
28 simp1 1135 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Ring)
29 simp3l 1200 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
30 simp3r 1201 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
311, 24, 25, 27, 28, 29, 30, 5mat1ov 22270 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r𝑅), 0 ))
32 eqcom 2738 . . . . . 6 (𝐼 = 𝐽𝐽 = 𝐼)
3332a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 = 𝐽𝐽 = 𝐼))
3433ifbid 4551 . . . 4 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐼 = 𝐽, (1r𝑅), 0 ) = if(𝐽 = 𝐼, (1r𝑅), 0 ))
3531, 34eqtrd 2771 . . 3 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼 1 𝐽) = if(𝐽 = 𝐼, (1r𝑅), 0 ))
3635ifeq2d 4548 . 2 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → if(𝐽 = 𝐾, (𝐶𝐼), (𝐼 1 𝐽)) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))
3723, 36eqtrd 2771 1 ((𝑅 ∈ Ring ∧ (𝑀𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐼), if(𝐽 = 𝐼, (1r𝑅), 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  ifcif 4528  cfv 6543  (class class class)co 7412  m cmap 8826  Fincfn 8945  Basecbs 17151  0gc0g 17392  1rcur 20082  Ringcrg 20134   Mat cmat 22227   matRepV cmatrepV 22379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-sup 9443  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-fzo 13635  df-seq 13974  df-hash 14298  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-0g 17394  df-gsum 17395  df-prds 17400  df-pws 17402  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-subg 19046  df-ghm 19135  df-cntz 19229  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-subrg 20467  df-lmod 20704  df-lss 20775  df-sra 21019  df-rgmod 21020  df-dsmm 21597  df-frlm 21612  df-mamu 22206  df-mat 22228  df-marepv 22381
This theorem is referenced by:  mulmarep1el  22394  1marepvmarrepid  22397
  Copyright terms: Public domain W3C validator