![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ma1repveval | Structured version Visualization version GIF version |
Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
ma1repvcl.1 | ⊢ 1 = (1r‘𝐴) |
mulmarep1el.0 | ⊢ 0 = (0g‘𝑅) |
mulmarep1el.e | ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
Ref | Expression |
---|---|
ma1repveval | ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marepvcl.a | . . . . . . . . 9 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | marepvcl.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22232 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 494 | . . . . . . 7 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | ma1repvcl.1 | . . . . . . . . . 10 ⊢ 1 = (1r‘𝐴) | |
6 | 1 | fveq2i 6894 | . . . . . . . . . 10 ⊢ (1r‘𝐴) = (1r‘(𝑁 Mat 𝑅)) |
7 | 5, 6 | eqtri 2759 | . . . . . . . . 9 ⊢ 1 = (1r‘(𝑁 Mat 𝑅)) |
8 | 1, 2, 7 | mat1bas 22271 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → 1 ∈ 𝐵) |
9 | 8 | expcom 413 | . . . . . . 7 ⊢ (𝑁 ∈ Fin → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
11 | 10 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → (𝑅 ∈ Ring → 1 ∈ 𝐵)) |
12 | 11 | impcom 407 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 1 ∈ 𝐵) |
13 | simpr2 1194 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝐶 ∈ 𝑉) | |
14 | simpr3 1195 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → 𝐾 ∈ 𝑁) | |
15 | 12, 13, 14 | 3jca 1127 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) → ( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁)) |
16 | mulmarep1el.e | . . . . . 6 ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | |
17 | 16 | a1i 11 | . . . . 5 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)) |
18 | 17 | oveqd 7429 | . . . 4 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽)) |
19 | eqid 2731 | . . . . 5 ⊢ (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅) | |
20 | marepvcl.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
21 | 1, 2, 19, 20 | marepveval 22390 | . . . 4 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
22 | 18, 21 | eqtrd 2771 | . . 3 ⊢ ((( 1 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
23 | 15, 22 | stoic3 1777 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽))) |
24 | eqid 2731 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
25 | mulmarep1el.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
26 | 4 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
27 | 26 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) |
28 | simp1 1135 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
29 | simp3l 1200 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
30 | simp3r 1201 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
31 | 1, 24, 25, 27, 28, 29, 30, 5 | mat1ov 22270 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r‘𝑅), 0 )) |
32 | eqcom 2738 | . . . . . 6 ⊢ (𝐼 = 𝐽 ↔ 𝐽 = 𝐼) | |
33 | 32 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 = 𝐽 ↔ 𝐽 = 𝐼)) |
34 | 33 | ifbid 4551 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐼 = 𝐽, (1r‘𝑅), 0 ) = if(𝐽 = 𝐼, (1r‘𝑅), 0 )) |
35 | 31, 34 | eqtrd 2771 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐽 = 𝐼, (1r‘𝑅), 0 )) |
36 | 35 | ifeq2d 4548 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → if(𝐽 = 𝐾, (𝐶‘𝐼), (𝐼 1 𝐽)) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
37 | 23, 36 | eqtrd 2771 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐼), if(𝐽 = 𝐼, (1r‘𝑅), 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ifcif 4528 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 Fincfn 8945 Basecbs 17151 0gc0g 17392 1rcur 20082 Ringcrg 20134 Mat cmat 22227 matRepV cmatrepV 22379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-pws 17402 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19046 df-ghm 19135 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-subrg 20467 df-lmod 20704 df-lss 20775 df-sra 21019 df-rgmod 21020 df-dsmm 21597 df-frlm 21612 df-mamu 22206 df-mat 22228 df-marepv 22381 |
This theorem is referenced by: mulmarep1el 22394 1marepvmarrepid 22397 |
Copyright terms: Public domain | W3C validator |