Proof of Theorem itgioocnicc
Step | Hyp | Ref
| Expression |
1 | | itgioocnicc.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | itgioocnicc.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | itgioocnicc.g |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
4 | | iftrue 4462 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
5 | | iftrue 4462 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅) |
6 | 4, 5 | eqtr4d 2781 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
7 | 6 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
8 | | iftrue 4462 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = 𝐿) |
9 | | iftrue 4462 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = 𝐿) |
10 | 8, 9 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) |
11 | 10 | adantl 481 |
. . . . . . . . . 10
⊢ ((¬
𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) |
12 | 11 | ifeq2d 4476 |
. . . . . . . . 9
⊢ ((¬
𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
13 | 12 | adantll 710 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
14 | | iffalse 4465 |
. . . . . . . . . 10
⊢ (¬
𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
15 | 14 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
16 | | iffalse 4465 |
. . . . . . . . . 10
⊢ (¬
𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
17 | 16 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
18 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) |
19 | 18 | ad2antlr 723 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) |
20 | | iffalse 4465 |
. . . . . . . . . . 11
⊢ (¬
𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) |
21 | 20 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) |
22 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
23 | 22 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈
ℝ*) |
24 | 23 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) |
25 | 2 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
26 | 25 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) |
27 | 2 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
28 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
29 | | eliccre 42933 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
30 | 22, 27, 28, 29 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
31 | 30 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ) |
32 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ) |
33 | 30 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ) |
34 | 25 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈
ℝ*) |
35 | | iccgelb 13064 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
36 | 23, 34, 28, 35 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ≤ 𝑥) |
38 | | neqne 2950 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = 𝐴 → 𝑥 ≠ 𝐴) |
39 | 38 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ≠ 𝐴) |
40 | 32, 33, 37, 39 | leneltd 11059 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥) |
41 | 40 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥) |
42 | 30 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ) |
43 | 2 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ) |
44 | | iccleub 13063 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
45 | 23, 34, 28, 44 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
46 | 45 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ≤ 𝐵) |
47 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝐵 ↔ 𝐵 = 𝑥) |
48 | 47 | notbii 319 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑥 = 𝐵 ↔ ¬ 𝐵 = 𝑥) |
49 | 48 | biimpi 215 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 = 𝐵 → ¬ 𝐵 = 𝑥) |
50 | 49 | neqned 2949 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 = 𝐵 → 𝐵 ≠ 𝑥) |
51 | 50 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ≠ 𝑥) |
52 | 42, 43, 46, 51 | leneltd 11059 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
53 | 52 | adantlr 711 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
54 | 24, 26, 31, 41, 53 | eliood 42926 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵)) |
55 | | fvres 6775 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴(,)𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹‘𝑥)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹‘𝑥)) |
57 | 19, 21, 56 | 3eqtrrd 2783 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
58 | 15, 17, 57 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
59 | 13, 58 | pm2.61dan 809 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
60 | 7, 59 | pm2.61dan 809 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
61 | 60 | mpteq2dva 5170 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))) |
62 | 3, 61 | syl5eq 2791 |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))) |
63 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
64 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) |
65 | | itgioocnicc.fcn |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
66 | | itgioocnicc.l |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵)) |
67 | | itgioocnicc.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴)) |
68 | 63, 64, 1, 2, 65, 66, 67 | cncfiooicc 43325 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
69 | 62, 68 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
70 | | cniccibl 24910 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐺 ∈
𝐿1) |
71 | 1, 2, 69, 70 | syl3anc 1369 |
. 2
⊢ (𝜑 → 𝐺 ∈
𝐿1) |
72 | 4 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
73 | | limccl 24944 |
. . . . . . . . . . 11
⊢ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐴) ⊆ ℂ |
74 | 73, 67 | sselid 3915 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ ℂ) |
75 | 74 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ) |
76 | 72, 75 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
77 | 14, 8 | sylan9eq 2799 |
. . . . . . . . . . 11
⊢ ((¬
𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) |
78 | 77 | adantll 710 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) |
79 | | limccl 24944 |
. . . . . . . . . . . 12
⊢ ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵) ⊆ ℂ |
80 | 79, 66 | sselid 3915 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐿 ∈ ℂ) |
81 | 80 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ) |
82 | 78, 81 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
83 | 14, 16 | sylan9eq 2799 |
. . . . . . . . . . 11
⊢ ((¬
𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
84 | 83 | adantll 710 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
85 | 56 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹‘𝑥) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) |
86 | | cncff 23962 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ) |
87 | 65, 86 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ) |
88 | 87 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ) |
89 | 88, 54 | ffvelrnd 6944 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) ∈ ℂ) |
90 | 85, 89 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹‘𝑥) ∈ ℂ) |
91 | 84, 90 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
92 | 82, 91 | pm2.61dan 809 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
93 | 76, 92 | pm2.61dan 809 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) |
94 | 3 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℂ) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
95 | 28, 93, 94 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
96 | 95, 93 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐺‘𝑥) ∈ ℂ) |
97 | 1, 2, 96 | itgioo 24885 |
. . . 4
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐺‘𝑥) d𝑥) |
98 | 97 | eqcomd 2744 |
. . 3
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥) |
99 | | ioossicc 13094 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
100 | 99 | sseli 3913 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
101 | 100, 95 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
102 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
103 | | eliooord 13067 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
104 | 103 | simpld 494 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥) |
105 | 104 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥) |
106 | 102, 105 | gtned 11040 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐴) |
107 | 106 | neneqd 2947 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴) |
108 | 107, 14 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
109 | 100, 30 | sylan2 592 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ) |
110 | 103 | simprd 495 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵) |
111 | 110 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵) |
112 | 109, 111 | ltned 11041 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ≠ 𝐵) |
113 | 112 | neneqd 2947 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵) |
114 | 113, 16 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
115 | 101, 108,
114 | 3eqtrd 2782 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (𝐺‘𝑥) = (𝐹‘𝑥)) |
116 | 115 | itgeq2dv 24851 |
. . 3
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥) |
117 | | itgioocnicc.f |
. . . . . 6
⊢ (𝜑 → 𝐹:dom 𝐹⟶ℂ) |
118 | 117 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:dom 𝐹⟶ℂ) |
119 | | itgioocnicc.fdom |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹) |
120 | 119 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ dom 𝐹) |
121 | 118, 120 | ffvelrnd 6944 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
122 | 1, 2, 121 | itgioo 24885 |
. . 3
⊢ (𝜑 → ∫(𝐴(,)𝐵)(𝐹‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
123 | 98, 116, 122 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → ∫(𝐴[,]𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥) |
124 | 71, 123 | jca 511 |
1
⊢ (𝜑 → (𝐺 ∈ 𝐿1 ∧
∫(𝐴[,]𝐵)(𝐺‘𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹‘𝑥) d𝑥)) |