Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgioocnicc Structured version   Visualization version   GIF version

Theorem itgioocnicc 44683
Description: The integral of a piecewise continuous function 𝐹 on an open interval is equal to the integral of the continuous function 𝐺, in the corresponding closed interval. 𝐺 is equal to 𝐹 on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgioocnicc.a (πœ‘ β†’ 𝐴 ∈ ℝ)
itgioocnicc.b (πœ‘ β†’ 𝐡 ∈ ℝ)
itgioocnicc.f (πœ‘ β†’ 𝐹:dom πΉβŸΆβ„‚)
itgioocnicc.fcn (πœ‘ β†’ (𝐹 β†Ύ (𝐴(,)𝐡)) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
itgioocnicc.fdom (πœ‘ β†’ (𝐴[,]𝐡) βŠ† dom 𝐹)
itgioocnicc.r (πœ‘ β†’ 𝑅 ∈ ((𝐹 β†Ύ (𝐴(,)𝐡)) limβ„‚ 𝐴))
itgioocnicc.l (πœ‘ β†’ 𝐿 ∈ ((𝐹 β†Ύ (𝐴(,)𝐡)) limβ„‚ 𝐡))
itgioocnicc.g 𝐺 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))))
Assertion
Ref Expression
itgioocnicc (πœ‘ β†’ (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐡)(πΊβ€˜π‘₯) dπ‘₯ = ∫(𝐴[,]𝐡)(πΉβ€˜π‘₯) dπ‘₯))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐹   π‘₯,𝐿   π‘₯,𝑅   πœ‘,π‘₯
Allowed substitution hint:   𝐺(π‘₯)

Proof of Theorem itgioocnicc
StepHypRef Expression
1 itgioocnicc.a . . 3 (πœ‘ β†’ 𝐴 ∈ ℝ)
2 itgioocnicc.b . . 3 (πœ‘ β†’ 𝐡 ∈ ℝ)
3 itgioocnicc.g . . . . 5 𝐺 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))))
4 iftrue 4534 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝑅)
5 iftrue 4534 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))) = 𝑅)
64, 5eqtr4d 2775 . . . . . . . 8 (π‘₯ = 𝐴 β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
76adantl 482 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
8 iftrue 4534 . . . . . . . . . . . 12 (π‘₯ = 𝐡 β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = 𝐿)
9 iftrue 4534 . . . . . . . . . . . 12 (π‘₯ = 𝐡 β†’ if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)) = 𝐿)
108, 9eqtr4d 2775 . . . . . . . . . . 11 (π‘₯ = 𝐡 β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))
1110adantl 482 . . . . . . . . . 10 ((Β¬ π‘₯ = 𝐴 ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))
1211ifeq2d 4548 . . . . . . . . 9 ((Β¬ π‘₯ = 𝐴 ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
1312adantll 712 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
14 iffalse 4537 . . . . . . . . . 10 (Β¬ π‘₯ = 𝐴 β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)))
1514ad2antlr 725 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)))
16 iffalse 4537 . . . . . . . . . 10 (Β¬ π‘₯ = 𝐡 β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯))
1716adantl 482 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯))
18 iffalse 4537 . . . . . . . . . . 11 (Β¬ π‘₯ = 𝐴 β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))) = if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))
1918ad2antlr 725 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))) = if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))
20 iffalse 4537 . . . . . . . . . . 11 (Β¬ π‘₯ = 𝐡 β†’ if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)) = ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))
2120adantl 482 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)) = ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))
221adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐴 ∈ ℝ)
2322rexrd 11263 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐴 ∈ ℝ*)
2423ad2antrr 724 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐴 ∈ ℝ*)
252rexrd 11263 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝐡 ∈ ℝ*)
2625ad3antrrr 728 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐡 ∈ ℝ*)
272adantr 481 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ)
28 simpr 485 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ∈ (𝐴[,]𝐡))
29 eliccre 44208 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ∈ ℝ)
3022, 27, 28, 29syl3anc 1371 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ∈ ℝ)
3130ad2antrr 724 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ∈ ℝ)
321ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐴 ∈ ℝ)
3330adantr 481 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ π‘₯ ∈ ℝ)
3425adantr 481 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ*)
35 iccgelb 13379 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐴 ≀ π‘₯)
3623, 34, 28, 35syl3anc 1371 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐴 ≀ π‘₯)
3736adantr 481 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐴 ≀ π‘₯)
38 neqne 2948 . . . . . . . . . . . . . . 15 (Β¬ π‘₯ = 𝐴 β†’ π‘₯ β‰  𝐴)
3938adantl 482 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ π‘₯ β‰  𝐴)
4032, 33, 37, 39leneltd 11367 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐴 < π‘₯)
4140adantr 481 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐴 < π‘₯)
4230adantr 481 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ∈ ℝ)
432ad2antrr 724 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐡 ∈ ℝ)
44 iccleub 13378 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ≀ 𝐡)
4523, 34, 28, 44syl3anc 1371 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ≀ 𝐡)
4645adantr 481 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ≀ 𝐡)
47 eqcom 2739 . . . . . . . . . . . . . . . . . 18 (π‘₯ = 𝐡 ↔ 𝐡 = π‘₯)
4847notbii 319 . . . . . . . . . . . . . . . . 17 (Β¬ π‘₯ = 𝐡 ↔ Β¬ 𝐡 = π‘₯)
4948biimpi 215 . . . . . . . . . . . . . . . 16 (Β¬ π‘₯ = 𝐡 β†’ Β¬ 𝐡 = π‘₯)
5049neqned 2947 . . . . . . . . . . . . . . 15 (Β¬ π‘₯ = 𝐡 β†’ 𝐡 β‰  π‘₯)
5150adantl 482 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐡 β‰  π‘₯)
5242, 43, 46, 51leneltd 11367 . . . . . . . . . . . . 13 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ < 𝐡)
5352adantlr 713 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ < 𝐡)
5424, 26, 31, 41, 53eliood 44201 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ∈ (𝐴(,)𝐡))
55 fvres 6910 . . . . . . . . . . 11 (π‘₯ ∈ (𝐴(,)𝐡) β†’ ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯) = (πΉβ€˜π‘₯))
5654, 55syl 17 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯) = (πΉβ€˜π‘₯))
5719, 21, 563eqtrrd 2777 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ (πΉβ€˜π‘₯) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
5815, 17, 573eqtrd 2776 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
5913, 58pm2.61dan 811 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
607, 59pm2.61dan 811 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
6160mpteq2dva 5248 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)))) = (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))))
623, 61eqtrid 2784 . . . 4 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))))
63 nfv 1917 . . . . 5 β„²π‘₯πœ‘
64 eqid 2732 . . . . 5 (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))) = (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))))
65 itgioocnicc.fcn . . . . 5 (πœ‘ β†’ (𝐹 β†Ύ (𝐴(,)𝐡)) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
66 itgioocnicc.l . . . . 5 (πœ‘ β†’ 𝐿 ∈ ((𝐹 β†Ύ (𝐴(,)𝐡)) limβ„‚ 𝐡))
67 itgioocnicc.r . . . . 5 (πœ‘ β†’ 𝑅 ∈ ((𝐹 β†Ύ (𝐴(,)𝐡)) limβ„‚ 𝐴))
6863, 64, 1, 2, 65, 66, 67cncfiooicc 44600 . . . 4 (πœ‘ β†’ (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯)))) ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
6962, 68eqeltrd 2833 . . 3 (πœ‘ β†’ 𝐺 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
70 cniccibl 25357 . . 3 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ 𝐺 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚)) β†’ 𝐺 ∈ 𝐿1)
711, 2, 69, 70syl3anc 1371 . 2 (πœ‘ β†’ 𝐺 ∈ 𝐿1)
724adantl 482 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝑅)
73 limccl 25391 . . . . . . . . . . 11 ((𝐹 β†Ύ (𝐴(,)𝐡)) limβ„‚ 𝐴) βŠ† β„‚
7473, 67sselid 3980 . . . . . . . . . 10 (πœ‘ β†’ 𝑅 ∈ β„‚)
7574ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ π‘₯ = 𝐴) β†’ 𝑅 ∈ β„‚)
7672, 75eqeltrd 2833 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ β„‚)
7714, 8sylan9eq 2792 . . . . . . . . . . 11 ((Β¬ π‘₯ = 𝐴 ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝐿)
7877adantll 712 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝐿)
79 limccl 25391 . . . . . . . . . . . 12 ((𝐹 β†Ύ (𝐴(,)𝐡)) limβ„‚ 𝐡) βŠ† β„‚
8079, 66sselid 3980 . . . . . . . . . . 11 (πœ‘ β†’ 𝐿 ∈ β„‚)
8180ad3antrrr 728 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ 𝐿 ∈ β„‚)
8278, 81eqeltrd 2833 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ β„‚)
8314, 16sylan9eq 2792 . . . . . . . . . . 11 ((Β¬ π‘₯ = 𝐴 ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = (πΉβ€˜π‘₯))
8483adantll 712 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = (πΉβ€˜π‘₯))
8556eqcomd 2738 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ (πΉβ€˜π‘₯) = ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯))
86 cncff 24408 . . . . . . . . . . . . . 14 ((𝐹 β†Ύ (𝐴(,)𝐡)) ∈ ((𝐴(,)𝐡)–cnβ†’β„‚) β†’ (𝐹 β†Ύ (𝐴(,)𝐡)):(𝐴(,)𝐡)βŸΆβ„‚)
8765, 86syl 17 . . . . . . . . . . . . 13 (πœ‘ β†’ (𝐹 β†Ύ (𝐴(,)𝐡)):(𝐴(,)𝐡)βŸΆβ„‚)
8887ad3antrrr 728 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ (𝐹 β†Ύ (𝐴(,)𝐡)):(𝐴(,)𝐡)βŸΆβ„‚)
8988, 54ffvelcdmd 7087 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ ((𝐹 β†Ύ (𝐴(,)𝐡))β€˜π‘₯) ∈ β„‚)
9085, 89eqeltrd 2833 . . . . . . . . . 10 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
9184, 90eqeltrd 2833 . . . . . . . . 9 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ β„‚)
9282, 91pm2.61dan 811 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ β„‚)
9376, 92pm2.61dan 811 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ β„‚)
943fvmpt2 7009 . . . . . . 7 ((π‘₯ ∈ (𝐴[,]𝐡) ∧ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ β„‚) β†’ (πΊβ€˜π‘₯) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))))
9528, 93, 94syl2anc 584 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (πΊβ€˜π‘₯) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))))
9695, 93eqeltrd 2833 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (πΊβ€˜π‘₯) ∈ β„‚)
971, 2, 96itgioo 25332 . . . 4 (πœ‘ β†’ ∫(𝐴(,)𝐡)(πΊβ€˜π‘₯) dπ‘₯ = ∫(𝐴[,]𝐡)(πΊβ€˜π‘₯) dπ‘₯)
9897eqcomd 2738 . . 3 (πœ‘ β†’ ∫(𝐴[,]𝐡)(πΊβ€˜π‘₯) dπ‘₯ = ∫(𝐴(,)𝐡)(πΊβ€˜π‘₯) dπ‘₯)
99 ioossicc 13409 . . . . . . 7 (𝐴(,)𝐡) βŠ† (𝐴[,]𝐡)
10099sseli 3978 . . . . . 6 (π‘₯ ∈ (𝐴(,)𝐡) β†’ π‘₯ ∈ (𝐴[,]𝐡))
101100, 95sylan2 593 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ (πΊβ€˜π‘₯) = if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))))
1021adantr 481 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ 𝐴 ∈ ℝ)
103 eliooord 13382 . . . . . . . . . 10 (π‘₯ ∈ (𝐴(,)𝐡) β†’ (𝐴 < π‘₯ ∧ π‘₯ < 𝐡))
104103simpld 495 . . . . . . . . 9 (π‘₯ ∈ (𝐴(,)𝐡) β†’ 𝐴 < π‘₯)
105104adantl 482 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ 𝐴 < π‘₯)
106102, 105gtned 11348 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ π‘₯ β‰  𝐴)
107106neneqd 2945 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ Β¬ π‘₯ = 𝐴)
108107, 14syl 17 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)))
109100, 30sylan2 593 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ π‘₯ ∈ ℝ)
110103simprd 496 . . . . . . . . 9 (π‘₯ ∈ (𝐴(,)𝐡) β†’ π‘₯ < 𝐡)
111110adantl 482 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ π‘₯ < 𝐡)
112109, 111ltned 11349 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ π‘₯ β‰  𝐡)
113112neneqd 2945 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ Β¬ π‘₯ = 𝐡)
114113, 16syl 17 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯))
115101, 108, 1143eqtrd 2776 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝐴(,)𝐡)) β†’ (πΊβ€˜π‘₯) = (πΉβ€˜π‘₯))
116115itgeq2dv 25298 . . 3 (πœ‘ β†’ ∫(𝐴(,)𝐡)(πΊβ€˜π‘₯) dπ‘₯ = ∫(𝐴(,)𝐡)(πΉβ€˜π‘₯) dπ‘₯)
117 itgioocnicc.f . . . . . 6 (πœ‘ β†’ 𝐹:dom πΉβŸΆβ„‚)
118117adantr 481 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐹:dom πΉβŸΆβ„‚)
119 itgioocnicc.fdom . . . . . 6 (πœ‘ β†’ (𝐴[,]𝐡) βŠ† dom 𝐹)
120119sselda 3982 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ∈ dom 𝐹)
121118, 120ffvelcdmd 7087 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
1221, 2, 121itgioo 25332 . . 3 (πœ‘ β†’ ∫(𝐴(,)𝐡)(πΉβ€˜π‘₯) dπ‘₯ = ∫(𝐴[,]𝐡)(πΉβ€˜π‘₯) dπ‘₯)
12398, 116, 1223eqtrd 2776 . 2 (πœ‘ β†’ ∫(𝐴[,]𝐡)(πΊβ€˜π‘₯) dπ‘₯ = ∫(𝐴[,]𝐡)(πΉβ€˜π‘₯) dπ‘₯)
12471, 123jca 512 1 (πœ‘ β†’ (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐡)(πΊβ€˜π‘₯) dπ‘₯ = ∫(𝐴[,]𝐡)(πΉβ€˜π‘₯) dπ‘₯))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   βŠ† wss 3948  ifcif 4528   class class class wbr 5148   ↦ cmpt 5231  dom cdm 5676   β†Ύ cres 5678  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  β„‚cc 11107  β„cr 11108  β„*cxr 11246   < clt 11247   ≀ cle 11248  (,)cioo 13323  [,]cicc 13326  β€“cnβ†’ccncf 24391  πΏ1cibl 25133  βˆ«citg 25134   limβ„‚ climc 25378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cc 10429  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-symdif 4242  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-oadd 8469  df-omul 8470  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-acn 9936  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ioc 13328  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-mod 13834  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15632  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-mulg 18950  df-cntz 19180  df-cmn 19649  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-cnfld 20944  df-top 22395  df-topon 22412  df-topsp 22434  df-bases 22448  df-cld 22522  df-ntr 22523  df-cls 22524  df-cn 22730  df-cnp 22731  df-cmp 22890  df-tx 23065  df-hmeo 23258  df-xms 23825  df-ms 23826  df-tms 23827  df-cncf 24393  df-ovol 24980  df-vol 24981  df-mbf 25135  df-itg1 25136  df-itg2 25137  df-ibl 25138  df-itg 25139  df-0p 25186  df-limc 25382
This theorem is referenced by:  fourierdlem81  44893
  Copyright terms: Public domain W3C validator