Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgioocnicc Structured version   Visualization version   GIF version

Theorem itgioocnicc 45982
Description: The integral of a piecewise continuous function 𝐹 on an open interval is equal to the integral of the continuous function 𝐺, in the corresponding closed interval. 𝐺 is equal to 𝐹 on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgioocnicc.a (𝜑𝐴 ∈ ℝ)
itgioocnicc.b (𝜑𝐵 ∈ ℝ)
itgioocnicc.f (𝜑𝐹:dom 𝐹⟶ℂ)
itgioocnicc.fcn (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
itgioocnicc.fdom (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
itgioocnicc.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
itgioocnicc.l (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
itgioocnicc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
Assertion
Ref Expression
itgioocnicc (𝜑 → (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem itgioocnicc
StepHypRef Expression
1 itgioocnicc.a . . 3 (𝜑𝐴 ∈ ℝ)
2 itgioocnicc.b . . 3 (𝜑𝐵 ∈ ℝ)
3 itgioocnicc.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
4 iftrue 4497 . . . . . . . . 9 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
5 iftrue 4497 . . . . . . . . 9 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
64, 5eqtr4d 2768 . . . . . . . 8 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
76adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
8 iftrue 4497 . . . . . . . . . . . 12 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
9 iftrue 4497 . . . . . . . . . . . 12 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = 𝐿)
108, 9eqtr4d 2768 . . . . . . . . . . 11 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
1110adantl 481 . . . . . . . . . 10 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
1211ifeq2d 4512 . . . . . . . . 9 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
1312adantll 714 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
14 iffalse 4500 . . . . . . . . . 10 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
1514ad2antlr 727 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
16 iffalse 4500 . . . . . . . . . 10 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
1716adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
18 iffalse 4500 . . . . . . . . . . 11 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
1918ad2antlr 727 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
20 iffalse 4500 . . . . . . . . . . 11 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2120adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
221adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
2322rexrd 11231 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
2423ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
252rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
2625ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
272adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
28 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
29 eliccre 45510 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3022, 27, 28, 29syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3130ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
321ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
3330adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
3425adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
35 iccgelb 13370 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
3623, 34, 28, 35syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
3736adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
38 neqne 2934 . . . . . . . . . . . . . . 15 𝑥 = 𝐴𝑥𝐴)
3938adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
4032, 33, 37, 39leneltd 11335 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
4140adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
4230adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
432ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
44 iccleub 13369 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
4523, 34, 28, 44syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
4645adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
47 eqcom 2737 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵𝐵 = 𝑥)
4847notbii 320 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵 ↔ ¬ 𝐵 = 𝑥)
4948biimpi 216 . . . . . . . . . . . . . . . 16 𝑥 = 𝐵 → ¬ 𝐵 = 𝑥)
5049neqned 2933 . . . . . . . . . . . . . . 15 𝑥 = 𝐵𝐵𝑥)
5150adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
5242, 43, 46, 51leneltd 11335 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5352adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5424, 26, 31, 41, 53eliood 45503 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
55 fvres 6880 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
5654, 55syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
5719, 21, 563eqtrrd 2770 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
5815, 17, 573eqtrd 2769 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
5913, 58pm2.61dan 812 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
607, 59pm2.61dan 812 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
6160mpteq2dva 5203 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
623, 61eqtrid 2777 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
63 nfv 1914 . . . . 5 𝑥𝜑
64 eqid 2730 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
65 itgioocnicc.fcn . . . . 5 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
66 itgioocnicc.l . . . . 5 (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
67 itgioocnicc.r . . . . 5 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
6863, 64, 1, 2, 65, 66, 67cncfiooicc 45899 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6962, 68eqeltrd 2829 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
70 cniccibl 25749 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐺 ∈ 𝐿1)
711, 2, 69, 70syl3anc 1373 . 2 (𝜑𝐺 ∈ 𝐿1)
724adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
73 limccl 25783 . . . . . . . . . . 11 ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) ⊆ ℂ
7473, 67sselid 3947 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
7574ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ)
7672, 75eqeltrd 2829 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
7714, 8sylan9eq 2785 . . . . . . . . . . 11 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
7877adantll 714 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
79 limccl 25783 . . . . . . . . . . . 12 ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) ⊆ ℂ
8079, 66sselid 3947 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℂ)
8180ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
8278, 81eqeltrd 2829 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
8314, 16sylan9eq 2785 . . . . . . . . . . 11 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
8483adantll 714 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
8556eqcomd 2736 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
86 cncff 24793 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
8765, 86syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
8887ad3antrrr 730 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
8988, 54ffvelcdmd 7060 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) ∈ ℂ)
9085, 89eqeltrd 2829 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
9184, 90eqeltrd 2829 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9282, 91pm2.61dan 812 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9376, 92pm2.61dan 812 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
943fvmpt2 6982 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
9528, 93, 94syl2anc 584 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
9695, 93eqeltrd 2829 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺𝑥) ∈ ℂ)
971, 2, 96itgioo 25724 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥)
9897eqcomd 2736 . . 3 (𝜑 → ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
99 ioossicc 13401 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
10099sseli 3945 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
101100, 95sylan2 593 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
1021adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
103 eliooord 13373 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
104103simpld 494 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
105104adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
106102, 105gtned 11316 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
107106neneqd 2931 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
108107, 14syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
109100, 30sylan2 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
110103simprd 495 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
111110adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
112109, 111ltned 11317 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐵)
113112neneqd 2931 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
114113, 16syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
115101, 108, 1143eqtrd 2769 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = (𝐹𝑥))
116115itgeq2dv 25690 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥)
117 itgioocnicc.f . . . . . 6 (𝜑𝐹:dom 𝐹⟶ℂ)
118117adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:dom 𝐹⟶ℂ)
119 itgioocnicc.fdom . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
120119sselda 3949 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ dom 𝐹)
121118, 120ffvelcdmd 7060 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
1221, 2, 121itgioo 25724 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
12398, 116, 1223eqtrd 2769 . 2 (𝜑 → ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
12471, 123jca 511 1 (𝜑 → (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  [,]cicc 13316  cnccncf 24776  𝐿1cibl 25525  citg 25526   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-itg 25531  df-0p 25578  df-limc 25774
This theorem is referenced by:  fourierdlem81  46192
  Copyright terms: Public domain W3C validator