Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgioocnicc Structured version   Visualization version   GIF version

Theorem itgioocnicc 45898
Description: The integral of a piecewise continuous function 𝐹 on an open interval is equal to the integral of the continuous function 𝐺, in the corresponding closed interval. 𝐺 is equal to 𝐹 on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgioocnicc.a (𝜑𝐴 ∈ ℝ)
itgioocnicc.b (𝜑𝐵 ∈ ℝ)
itgioocnicc.f (𝜑𝐹:dom 𝐹⟶ℂ)
itgioocnicc.fcn (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
itgioocnicc.fdom (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
itgioocnicc.r (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
itgioocnicc.l (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
itgioocnicc.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
Assertion
Ref Expression
itgioocnicc (𝜑 → (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐿   𝑥,𝑅   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem itgioocnicc
StepHypRef Expression
1 itgioocnicc.a . . 3 (𝜑𝐴 ∈ ℝ)
2 itgioocnicc.b . . 3 (𝜑𝐵 ∈ ℝ)
3 itgioocnicc.g . . . . 5 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
4 iftrue 4554 . . . . . . . . 9 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
5 iftrue 4554 . . . . . . . . 9 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = 𝑅)
64, 5eqtr4d 2783 . . . . . . . 8 (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
76adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
8 iftrue 4554 . . . . . . . . . . . 12 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = 𝐿)
9 iftrue 4554 . . . . . . . . . . . 12 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = 𝐿)
108, 9eqtr4d 2783 . . . . . . . . . . 11 (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
1110adantl 481 . . . . . . . . . 10 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
1211ifeq2d 4568 . . . . . . . . 9 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
1312adantll 713 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
14 iffalse 4557 . . . . . . . . . 10 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
1514ad2antlr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
16 iffalse 4557 . . . . . . . . . 10 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
1716adantl 481 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
18 iffalse 4557 . . . . . . . . . . 11 𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
1918ad2antlr 726 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))) = if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))
20 iffalse 4557 . . . . . . . . . . 11 𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
2120adantl 481 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
221adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
2322rexrd 11340 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
2423ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈ ℝ*)
252rexrd 11340 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
2625ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ*)
272adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
28 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
29 eliccre 45423 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3022, 27, 28, 29syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
3130ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
321ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ)
3330adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ)
3425adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
35 iccgelb 13463 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
3623, 34, 28, 35syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
3736adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴𝑥)
38 neqne 2954 . . . . . . . . . . . . . . 15 𝑥 = 𝐴𝑥𝐴)
3938adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥𝐴)
4032, 33, 37, 39leneltd 11444 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥)
4140adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥)
4230adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ)
432ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ)
44 iccleub 13462 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
4523, 34, 28, 44syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
4645adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥𝐵)
47 eqcom 2747 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝐵𝐵 = 𝑥)
4847notbii 320 . . . . . . . . . . . . . . . . 17 𝑥 = 𝐵 ↔ ¬ 𝐵 = 𝑥)
4948biimpi 216 . . . . . . . . . . . . . . . 16 𝑥 = 𝐵 → ¬ 𝐵 = 𝑥)
5049neqned 2953 . . . . . . . . . . . . . . 15 𝑥 = 𝐵𝐵𝑥)
5150adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵𝑥)
5242, 43, 46, 51leneltd 11444 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5352adantlr 714 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵)
5424, 26, 31, 41, 53eliood 45416 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵))
55 fvres 6939 . . . . . . . . . . 11 (𝑥 ∈ (𝐴(,)𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
5654, 55syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) = (𝐹𝑥))
5719, 21, 563eqtrrd 2785 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
5815, 17, 573eqtrd 2784 . . . . . . . 8 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
5913, 58pm2.61dan 812 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
607, 59pm2.61dan 812 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
6160mpteq2dva 5266 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
623, 61eqtrid 2792 . . . 4 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))))
63 nfv 1913 . . . . 5 𝑥𝜑
64 eqid 2740 . . . . 5 (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))))
65 itgioocnicc.fcn . . . . 5 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ))
66 itgioocnicc.l . . . . 5 (𝜑𝐿 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵))
67 itgioocnicc.r . . . . 5 (𝜑𝑅 ∈ ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴))
6863, 64, 1, 2, 65, 66, 67cncfiooicc 45815 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
6962, 68eqeltrd 2844 . . 3 (𝜑𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ))
70 cniccibl 25896 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) → 𝐺 ∈ 𝐿1)
711, 2, 69, 70syl3anc 1371 . 2 (𝜑𝐺 ∈ 𝐿1)
724adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝑅)
73 limccl 25930 . . . . . . . . . . 11 ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐴) ⊆ ℂ
7473, 67sselid 4006 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
7574ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℂ)
7672, 75eqeltrd 2844 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
7714, 8sylan9eq 2800 . . . . . . . . . . 11 ((¬ 𝑥 = 𝐴𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
7877adantll 713 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = 𝐿)
79 limccl 25930 . . . . . . . . . . . 12 ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) ⊆ ℂ
8079, 66sselid 4006 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℂ)
8180ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℂ)
8278, 81eqeltrd 2844 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
8314, 16sylan9eq 2800 . . . . . . . . . . 11 ((¬ 𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
8483adantll 713 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝑥))
8556eqcomd 2746 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) = ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥))
86 cncff 24938 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐴(,)𝐵)) ∈ ((𝐴(,)𝐵)–cn→ℂ) → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
8765, 86syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
8887ad3antrrr 729 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹 ↾ (𝐴(,)𝐵)):(𝐴(,)𝐵)⟶ℂ)
8988, 54ffvelcdmd 7119 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → ((𝐹 ↾ (𝐴(,)𝐵))‘𝑥) ∈ ℂ)
9085, 89eqeltrd 2844 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹𝑥) ∈ ℂ)
9184, 90eqeltrd 2844 . . . . . . . . 9 ((((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9282, 91pm2.61dan 812 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
9376, 92pm2.61dan 812 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ)
943fvmpt2 7040 . . . . . . 7 ((𝑥 ∈ (𝐴[,]𝐵) ∧ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) ∈ ℂ) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
9528, 93, 94syl2anc 583 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
9695, 93eqeltrd 2844 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐺𝑥) ∈ ℂ)
971, 2, 96itgioo 25871 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥)
9897eqcomd 2746 . . 3 (𝜑 → ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥)
99 ioossicc 13493 . . . . . . 7 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
10099sseli 4004 . . . . . 6 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
101100, 95sylan2 592 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
1021adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
103 eliooord 13466 . . . . . . . . . 10 (𝑥 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑥𝑥 < 𝐵))
104103simpld 494 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝐴 < 𝑥)
105104adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑥)
106102, 105gtned 11425 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐴)
107106neneqd 2951 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐴)
108107, 14syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
109100, 30sylan2 592 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ ℝ)
110103simprd 495 . . . . . . . . 9 (𝑥 ∈ (𝐴(,)𝐵) → 𝑥 < 𝐵)
111110adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 < 𝐵)
112109, 111ltned 11426 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐵)
113112neneqd 2951 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ¬ 𝑥 = 𝐵)
114113, 16syl 17 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
115101, 108, 1143eqtrd 2784 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) = (𝐹𝑥))
116115itgeq2dv 25837 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥)
117 itgioocnicc.f . . . . . 6 (𝜑𝐹:dom 𝐹⟶ℂ)
118117adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:dom 𝐹⟶ℂ)
119 itgioocnicc.fdom . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ dom 𝐹)
120119sselda 4008 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ dom 𝐹)
121118, 120ffvelcdmd 7119 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
1221, 2, 121itgioo 25871 . . 3 (𝜑 → ∫(𝐴(,)𝐵)(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
12398, 116, 1223eqtrd 2784 . 2 (𝜑 → ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
12471, 123jca 511 1 (𝜑 → (𝐺 ∈ 𝐿1 ∧ ∫(𝐴[,]𝐵)(𝐺𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  [,]cicc 13410  cnccncf 24921  𝐿1cibl 25671  citg 25672   lim climc 25917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921
This theorem is referenced by:  fourierdlem81  46108
  Copyright terms: Public domain W3C validator