MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd Structured version   Visualization version   GIF version

Theorem pntpbnd 27440
Description: Lemma for pnt 27466. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntpbnd 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Distinct variable groups:   𝑘,𝑎,𝑛,𝑥,𝑦   𝑒,𝑐,𝑘,𝑛,𝑥,𝑦,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntpbnd
Dummy variables 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntibnd.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd2 27419 . 2 𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑
3 simpl 482 . . . . 5 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → 𝑑 ∈ ℝ+)
4 2rp 12977 . . . . 5 2 ∈ ℝ+
5 rpaddcl 12994 . . . . 5 ((𝑑 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝑑 + 2) ∈ ℝ+)
63, 4, 5sylancl 585 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → (𝑑 + 2) ∈ ℝ+)
7 2re 12284 . . . . . . . 8 2 ∈ ℝ
8 elioore 13352 . . . . . . . . . 10 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
98adantl 481 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ)
10 eliooord 13381 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
1110adantl 481 . . . . . . . . . 10 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (0 < 𝑒𝑒 < 1))
1211simpld 494 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 0 < 𝑒)
139, 12elrpd 13011 . . . . . . . 8 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ+)
14 rerpdivcl 13002 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → (2 / 𝑒) ∈ ℝ)
157, 13, 14sylancr 586 . . . . . . 7 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (2 / 𝑒) ∈ ℝ)
1615rpefcld 16047 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (exp‘(2 / 𝑒)) ∈ ℝ+)
17 simpllr 773 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑒 ∈ (0(,)1))
18 eqid 2724 . . . . . . . . 9 (exp‘(2 / 𝑒)) = (exp‘(2 / 𝑒))
19 simplrr 775 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))
20 simp-4l 780 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑑 ∈ ℝ+)
21 simp-4r 781 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑)
22 eqid 2724 . . . . . . . . 9 (𝑑 + 2) = (𝑑 + 2)
23 simplrl 774 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
24 simpr 484 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
251, 17, 18, 19, 20, 21, 22, 23, 24pntpbnd2 27439 . . . . . . . 8 ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
26 iman 401 . . . . . . . 8 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) ↔ ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
2725, 26mpbir 230 . . . . . . 7 ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
2827ralrimivva 3192 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
29 oveq1 7409 . . . . . . . . 9 (𝑥 = (exp‘(2 / 𝑒)) → (𝑥(,)+∞) = ((exp‘(2 / 𝑒))(,)+∞))
3029raleqdv 3317 . . . . . . . 8 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3130ralbidv 3169 . . . . . . 7 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3231rspcev 3604 . . . . . 6 (((exp‘(2 / 𝑒)) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3316, 28, 32syl2anc 583 . . . . 5 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3433ralrimiva 3138 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
35 fvoveq1 7425 . . . . . . . . 9 (𝑐 = (𝑑 + 2) → (exp‘(𝑐 / 𝑒)) = (exp‘((𝑑 + 2) / 𝑒)))
3635oveq1d 7417 . . . . . . . 8 (𝑐 = (𝑑 + 2) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
3736raleqdv 3317 . . . . . . 7 (𝑐 = (𝑑 + 2) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3837rexbidv 3170 . . . . . 6 (𝑐 = (𝑑 + 2) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3938ralbidv 3169 . . . . 5 (𝑐 = (𝑑 + 2) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
4039rspcev 3604 . . . 4 (((𝑑 + 2) ∈ ℝ+ ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
416, 34, 40syl2anc 583 . . 3 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
4241rexlimiva 3139 . 2 (∃𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑 → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
432, 42ax-mp 5 1 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053  wrex 3062   class class class wbr 5139  cmpt 5222  cfv 6534  (class class class)co 7402  cr 11106  0cc0 11107  1c1 11108   + caddc 11110   · cmul 11112  +∞cpnf 11243   < clt 11246  cle 11247  cmin 11442   / cdiv 11869  cn 12210  2c2 12265  cz 12556  +crp 12972  (,)cioo 13322  [,)cico 13324  ...cfz 13482  abscabs 15179  Σcsu 15630  expce 16003  ψcchp 26944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-xnn0 12543  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ioo 13326  df-ioc 13327  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-fl 13755  df-mod 13833  df-seq 13965  df-exp 14026  df-fac 14232  df-bc 14261  df-hash 14289  df-shft 15012  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-limsup 15413  df-clim 15430  df-rlim 15431  df-o1 15432  df-lo1 15433  df-sum 15631  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-dvds 16197  df-gcd 16435  df-prm 16608  df-pc 16771  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17369  df-topn 17370  df-0g 17388  df-gsum 17389  df-topgen 17390  df-pt 17391  df-prds 17394  df-xrs 17449  df-qtop 17454  df-imas 17455  df-xps 17457  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18988  df-cntz 19225  df-cmn 19694  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-fbas 21227  df-fg 21228  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cld 22847  df-ntr 22848  df-cls 22849  df-nei 22926  df-lp 22964  df-perf 22965  df-cn 23055  df-cnp 23056  df-haus 23143  df-cmp 23215  df-tx 23390  df-hmeo 23583  df-fil 23674  df-fm 23766  df-flim 23767  df-flf 23768  df-xms 24150  df-ms 24151  df-tms 24152  df-cncf 24722  df-limc 25719  df-dv 25720  df-ulm 26232  df-log 26409  df-cxp 26410  df-atan 26718  df-em 26844  df-cht 26948  df-vma 26949  df-chp 26950  df-ppi 26951
This theorem is referenced by:  pntibnd  27445
  Copyright terms: Public domain W3C validator