MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd Structured version   Visualization version   GIF version

Theorem pntpbnd 25697
Description: Lemma for pnt 25723. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntpbnd 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Distinct variable groups:   𝑘,𝑎,𝑛,𝑥,𝑦   𝑒,𝑐,𝑘,𝑛,𝑥,𝑦,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntpbnd
Dummy variables 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntibnd.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd2 25676 . 2 𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑
3 simpl 476 . . . . 5 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → 𝑑 ∈ ℝ+)
4 2rp 12124 . . . . 5 2 ∈ ℝ+
5 rpaddcl 12143 . . . . 5 ((𝑑 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝑑 + 2) ∈ ℝ+)
63, 4, 5sylancl 580 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → (𝑑 + 2) ∈ ℝ+)
7 2re 11432 . . . . . . . 8 2 ∈ ℝ
8 elioore 12500 . . . . . . . . . 10 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
98adantl 475 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ)
10 eliooord 12528 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
1110adantl 475 . . . . . . . . . 10 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (0 < 𝑒𝑒 < 1))
1211simpld 490 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 0 < 𝑒)
139, 12elrpd 12160 . . . . . . . 8 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ+)
14 rerpdivcl 12151 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → (2 / 𝑒) ∈ ℝ)
157, 13, 14sylancr 581 . . . . . . 7 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (2 / 𝑒) ∈ ℝ)
1615rpefcld 15214 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (exp‘(2 / 𝑒)) ∈ ℝ+)
17 simpllr 793 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑒 ∈ (0(,)1))
18 eqid 2825 . . . . . . . . 9 (exp‘(2 / 𝑒)) = (exp‘(2 / 𝑒))
19 simplrr 796 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))
20 simp-4l 801 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑑 ∈ ℝ+)
21 simp-4r 803 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑)
22 eqid 2825 . . . . . . . . 9 (𝑑 + 2) = (𝑑 + 2)
23 simplrl 795 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
24 simpr 479 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
251, 17, 18, 19, 20, 21, 22, 23, 24pntpbnd2 25696 . . . . . . . 8 ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
26 iman 392 . . . . . . . 8 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) ↔ ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
2725, 26mpbir 223 . . . . . . 7 ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
2827ralrimivva 3180 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
29 oveq1 6917 . . . . . . . . 9 (𝑥 = (exp‘(2 / 𝑒)) → (𝑥(,)+∞) = ((exp‘(2 / 𝑒))(,)+∞))
3029raleqdv 3356 . . . . . . . 8 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3130ralbidv 3195 . . . . . . 7 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3231rspcev 3526 . . . . . 6 (((exp‘(2 / 𝑒)) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3316, 28, 32syl2anc 579 . . . . 5 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3433ralrimiva 3175 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
35 fvoveq1 6933 . . . . . . . . 9 (𝑐 = (𝑑 + 2) → (exp‘(𝑐 / 𝑒)) = (exp‘((𝑑 + 2) / 𝑒)))
3635oveq1d 6925 . . . . . . . 8 (𝑐 = (𝑑 + 2) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
3736raleqdv 3356 . . . . . . 7 (𝑐 = (𝑑 + 2) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3837rexbidv 3262 . . . . . 6 (𝑐 = (𝑑 + 2) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3938ralbidv 3195 . . . . 5 (𝑐 = (𝑑 + 2) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
4039rspcev 3526 . . . 4 (((𝑑 + 2) ∈ ℝ+ ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
416, 34, 40syl2anc 579 . . 3 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
4241rexlimiva 3237 . 2 (∃𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑 → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
432, 42ax-mp 5 1 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118   class class class wbr 4875  cmpt 4954  cfv 6127  (class class class)co 6910  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   · cmul 10264  +∞cpnf 10395   < clt 10398  cle 10399  cmin 10592   / cdiv 11016  cn 11357  2c2 11413  cz 11711  +crp 12119  (,)cioo 12470  [,)cico 12472  ...cfz 12626  abscabs 14358  Σcsu 14800  expce 15171  ψcchp 25239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-xnn0 11698  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ioc 12475  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-fac 13361  df-bc 13390  df-hash 13418  df-shft 14191  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-limsup 14586  df-clim 14603  df-rlim 14604  df-o1 14605  df-lo1 14606  df-sum 14801  df-ef 15177  df-e 15178  df-sin 15179  df-cos 15180  df-pi 15182  df-dvds 15365  df-gcd 15597  df-prm 15765  df-pc 15920  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-haus 21497  df-cmp 21568  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-tms 22504  df-cncf 23058  df-limc 24036  df-dv 24037  df-log 24709  df-cxp 24710  df-em 25139  df-cht 25243  df-vma 25244  df-chp 25245  df-ppi 25246
This theorem is referenced by:  pntibnd  25702
  Copyright terms: Public domain W3C validator