MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntpbnd Structured version   Visualization version   GIF version

Theorem pntpbnd 27546
Description: Lemma for pnt 27572. Establish smallness of 𝑅 at a point. Lemma 10.6.1 in [Shapiro], p. 436. (Contributed by Mario Carneiro, 10-Apr-2016.)
Hypothesis
Ref Expression
pntibnd.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntpbnd 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Distinct variable groups:   𝑘,𝑎,𝑛,𝑥,𝑦   𝑒,𝑐,𝑘,𝑛,𝑥,𝑦,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntpbnd
Dummy variables 𝑑 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntibnd.r . . 3 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
21pntrsumbnd2 27525 . 2 𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑
3 simpl 482 . . . . 5 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → 𝑑 ∈ ℝ+)
4 2rp 12901 . . . . 5 2 ∈ ℝ+
5 rpaddcl 12920 . . . . 5 ((𝑑 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝑑 + 2) ∈ ℝ+)
63, 4, 5sylancl 586 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → (𝑑 + 2) ∈ ℝ+)
7 2re 12210 . . . . . . . 8 2 ∈ ℝ
8 elioore 13282 . . . . . . . . . 10 (𝑒 ∈ (0(,)1) → 𝑒 ∈ ℝ)
98adantl 481 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ)
10 eliooord 13312 . . . . . . . . . . 11 (𝑒 ∈ (0(,)1) → (0 < 𝑒𝑒 < 1))
1110adantl 481 . . . . . . . . . 10 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (0 < 𝑒𝑒 < 1))
1211simpld 494 . . . . . . . . 9 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 0 < 𝑒)
139, 12elrpd 12937 . . . . . . . 8 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → 𝑒 ∈ ℝ+)
14 rerpdivcl 12928 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝑒 ∈ ℝ+) → (2 / 𝑒) ∈ ℝ)
157, 13, 14sylancr 587 . . . . . . 7 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (2 / 𝑒) ∈ ℝ)
1615rpefcld 16021 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → (exp‘(2 / 𝑒)) ∈ ℝ+)
17 simpllr 775 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑒 ∈ (0(,)1))
18 eqid 2733 . . . . . . . . 9 (exp‘(2 / 𝑒)) = (exp‘(2 / 𝑒))
19 simplrr 777 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))
20 simp-4l 782 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑑 ∈ ℝ+)
21 simp-4r 783 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑)
22 eqid 2733 . . . . . . . . 9 (𝑑 + 2) = (𝑑 + 2)
23 simplrl 776 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → 𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
24 simpr 484 . . . . . . . . 9 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
251, 17, 18, 19, 20, 21, 22, 23, 24pntpbnd2 27545 . . . . . . . 8 ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
26 iman 401 . . . . . . . 8 (((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) ↔ ¬ ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) ∧ ¬ ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
2725, 26mpbir 231 . . . . . . 7 ((((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) ∧ (𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞) ∧ 𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞))) → ∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
2827ralrimivva 3176 . . . . . 6 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
29 oveq1 7362 . . . . . . . . 9 (𝑥 = (exp‘(2 / 𝑒)) → (𝑥(,)+∞) = ((exp‘(2 / 𝑒))(,)+∞))
3029raleqdv 3293 . . . . . . . 8 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3130ralbidv 3156 . . . . . . 7 (𝑥 = (exp‘(2 / 𝑒)) → (∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3231rspcev 3573 . . . . . 6 (((exp‘(2 / 𝑒)) ∈ ℝ+ ∧ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ ((exp‘(2 / 𝑒))(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3316, 28, 32syl2anc 584 . . . . 5 (((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) ∧ 𝑒 ∈ (0(,)1)) → ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
3433ralrimiva 3125 . . . 4 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
35 fvoveq1 7378 . . . . . . . . 9 (𝑐 = (𝑑 + 2) → (exp‘(𝑐 / 𝑒)) = (exp‘((𝑑 + 2) / 𝑒)))
3635oveq1d 7370 . . . . . . . 8 (𝑐 = (𝑑 + 2) → ((exp‘(𝑐 / 𝑒))[,)+∞) = ((exp‘((𝑑 + 2) / 𝑒))[,)+∞))
3736raleqdv 3293 . . . . . . 7 (𝑐 = (𝑑 + 2) → (∀𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3837rexbidv 3157 . . . . . 6 (𝑐 = (𝑑 + 2) → (∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
3938ralbidv 3156 . . . . 5 (𝑐 = (𝑑 + 2) → (∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒) ↔ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)))
4039rspcev 3573 . . . 4 (((𝑑 + 2) ∈ ℝ+ ∧ ∀𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘((𝑑 + 2) / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
416, 34, 40syl2anc 584 . . 3 ((𝑑 ∈ ℝ+ ∧ ∀𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑) → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
4241rexlimiva 3126 . 2 (∃𝑑 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ ℤ (abs‘Σ𝑛 ∈ (𝑖...𝑗)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑑 → ∃𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒))
432, 42ax-mp 5 1 𝑐 ∈ ℝ+𝑒 ∈ (0(,)1)∃𝑥 ∈ ℝ+𝑘 ∈ ((exp‘(𝑐 / 𝑒))[,)+∞)∀𝑦 ∈ (𝑥(,)+∞)∃𝑛 ∈ ℕ ((𝑦 < 𝑛𝑛 ≤ (𝑘 · 𝑦)) ∧ (abs‘((𝑅𝑛) / 𝑛)) ≤ 𝑒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  +∞cpnf 11154   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  2c2 12191  cz 12479  +crp 12896  (,)cioo 13252  [,)cico 13254  ...cfz 13414  abscabs 15148  Σcsu 15600  expce 15975  ψcchp 27050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-o1 15404  df-lo1 15405  df-sum 15601  df-ef 15981  df-e 15982  df-sin 15983  df-cos 15984  df-tan 15985  df-pi 15986  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-cmp 23322  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-ulm 26333  df-log 26512  df-cxp 26513  df-atan 26824  df-em 26950  df-cht 27054  df-vma 27055  df-chp 27056  df-ppi 27057
This theorem is referenced by:  pntibnd  27551
  Copyright terms: Public domain W3C validator