MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem13 Structured version   Visualization version   GIF version

Theorem vdwlem13 16964
Description: Lemma for vdw 16965. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdw.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
vdwlem13 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝐾,𝑛   𝑅,𝑓,𝑛   𝜑,𝑓

Proof of Theorem vdwlem13
Dummy variables 𝑎 𝑐 𝑑 𝑔 𝑘 𝑚 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12884 . . 3 (𝐾 ∈ ℕ ↔ (𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)))
2 vdw.r . . . . . . . . . 10 (𝜑𝑅 ∈ Fin)
3 ovex 7420 . . . . . . . . . 10 (1...1) ∈ V
4 elmapg 8812 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...1) ∈ V) → (𝑓 ∈ (𝑅m (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
52, 3, 4sylancl 586 . . . . . . . . 9 (𝜑 → (𝑓 ∈ (𝑅m (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
65biimpa 476 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅m (1...1))) → 𝑓:(1...1)⟶𝑅)
7 1nn 12197 . . . . . . . . . 10 1 ∈ ℕ
8 vdwap1 16948 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘1)1) = {1})
97, 7, 8mp2an 692 . . . . . . . . 9 (1(AP‘1)1) = {1}
10 1z 12563 . . . . . . . . . . . 12 1 ∈ ℤ
11 elfz3 13495 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ (1...1))
1210, 11mp1i 13 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (1...1))
13 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (𝑓‘1) = (𝑓‘1))
14 ffn 6688 . . . . . . . . . . . . 13 (𝑓:(1...1)⟶𝑅𝑓 Fn (1...1))
1514adantl 481 . . . . . . . . . . . 12 ((𝜑𝑓:(1...1)⟶𝑅) → 𝑓 Fn (1...1))
16 fniniseg 7032 . . . . . . . . . . . 12 (𝑓 Fn (1...1) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1715, 16syl 17 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1812, 13, 17mpbir2and 713 . . . . . . . . . 10 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (𝑓 “ {(𝑓‘1)}))
1918snssd 4773 . . . . . . . . 9 ((𝜑𝑓:(1...1)⟶𝑅) → {1} ⊆ (𝑓 “ {(𝑓‘1)}))
209, 19eqsstrid 3985 . . . . . . . 8 ((𝜑𝑓:(1...1)⟶𝑅) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
216, 20syldan 591 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅m (1...1))) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
2221ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
23 fveq2 6858 . . . . . . . . 9 (𝐾 = 1 → (AP‘𝐾) = (AP‘1))
2423oveqd 7404 . . . . . . . 8 (𝐾 = 1 → (1(AP‘𝐾)1) = (1(AP‘1)1))
2524sseq1d 3978 . . . . . . 7 (𝐾 = 1 → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2625ralbidv 3156 . . . . . 6 (𝐾 = 1 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2722, 26syl5ibrcom 247 . . . . 5 (𝜑 → (𝐾 = 1 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
28 oveq1 7394 . . . . . . . . . . . 12 (𝑎 = 1 → (𝑎(AP‘𝐾)𝑑) = (1(AP‘𝐾)𝑑))
2928sseq1d 3978 . . . . . . . . . . 11 (𝑎 = 1 → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
30 oveq2 7395 . . . . . . . . . . . 12 (𝑑 = 1 → (1(AP‘𝐾)𝑑) = (1(AP‘𝐾)1))
3130sseq1d 3978 . . . . . . . . . . 11 (𝑑 = 1 → ((1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
3229, 31rspc2ev 3601 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ ∧ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
337, 7, 32mp3an12 1453 . . . . . . . . 9 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
34 fvex 6871 . . . . . . . . . 10 (𝑓‘1) ∈ V
35 sneq 4599 . . . . . . . . . . . . 13 (𝑐 = (𝑓‘1) → {𝑐} = {(𝑓‘1)})
3635imaeq2d 6031 . . . . . . . . . . . 12 (𝑐 = (𝑓‘1) → (𝑓 “ {𝑐}) = (𝑓 “ {(𝑓‘1)}))
3736sseq2d 3979 . . . . . . . . . . 11 (𝑐 = (𝑓‘1) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
38372rexbidv 3202 . . . . . . . . . 10 (𝑐 = (𝑓‘1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
3934, 38spcev 3572 . . . . . . . . 9 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
4033, 39syl 17 . . . . . . . 8 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
41 vdw.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
4241adantr 480 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝑅m (1...1))) → 𝐾 ∈ ℕ0)
433, 42, 6vdwmc 16949 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅m (1...1))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐})))
4440, 43imbitrrid 246 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅m (1...1))) → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → 𝐾 MonoAP 𝑓))
4544ralimdva 3145 . . . . . 6 (𝜑 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓))
46 oveq2 7395 . . . . . . . . . 10 (𝑛 = 1 → (1...𝑛) = (1...1))
4746oveq2d 7403 . . . . . . . . 9 (𝑛 = 1 → (𝑅m (1...𝑛)) = (𝑅m (1...1)))
4847raleqdv 3299 . . . . . . . 8 (𝑛 = 1 → (∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓))
4948rspcev 3588 . . . . . . 7 ((1 ∈ ℕ ∧ ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
507, 49mpan 690 . . . . . 6 (∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
5145, 50syl6 35 . . . . 5 (𝜑 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
5227, 51syld 47 . . . 4 (𝜑 → (𝐾 = 1 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
53 breq1 5110 . . . . . . . 8 (𝑥 = 2 → (𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓))
5453rexralbidv 3203 . . . . . . 7 (𝑥 = 2 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓))
5554ralbidv 3156 . . . . . 6 (𝑥 = 2 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓))
56 breq1 5110 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 MonoAP 𝑓𝑘 MonoAP 𝑓))
5756rexralbidv 3203 . . . . . . 7 (𝑥 = 𝑘 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓))
5857ralbidv 3156 . . . . . 6 (𝑥 = 𝑘 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓))
59 breq1 5110 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑥 MonoAP 𝑓 ↔ (𝑘 + 1) MonoAP 𝑓))
6059rexralbidv 3203 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
6160ralbidv 3156 . . . . . 6 (𝑥 = (𝑘 + 1) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
62 breq1 5110 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 MonoAP 𝑓𝐾 MonoAP 𝑓))
6362rexralbidv 3203 . . . . . . 7 (𝑥 = 𝐾 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓))
6463ralbidv 3156 . . . . . 6 (𝑥 = 𝐾 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓))
65 hashcl 14321 . . . . . . . . 9 (𝑟 ∈ Fin → (♯‘𝑟) ∈ ℕ0)
66 nn0p1nn 12481 . . . . . . . . 9 ((♯‘𝑟) ∈ ℕ0 → ((♯‘𝑟) + 1) ∈ ℕ)
6765, 66syl 17 . . . . . . . 8 (𝑟 ∈ Fin → ((♯‘𝑟) + 1) ∈ ℕ)
68 simpll 766 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑟 ∈ Fin)
69 simplr 768 . . . . . . . . . . . 12 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1))))
70 vex 3451 . . . . . . . . . . . . 13 𝑟 ∈ V
71 ovex 7420 . . . . . . . . . . . . 13 (1...((♯‘𝑟) + 1)) ∈ V
7270, 71elmap 8844 . . . . . . . . . . . 12 (𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1))) ↔ 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟)
7369, 72sylib 218 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟)
74 simpr 484 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → ¬ 2 MonoAP 𝑓)
7568, 73, 74vdwlem12 16963 . . . . . . . . . 10 ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓)
76 iman 401 . . . . . . . . . 10 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) → 2 MonoAP 𝑓) ↔ ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓))
7775, 76mpbir 231 . . . . . . . . 9 ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) → 2 MonoAP 𝑓)
7877ralrimiva 3125 . . . . . . . 8 (𝑟 ∈ Fin → ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓)
79 oveq2 7395 . . . . . . . . . . 11 (𝑛 = ((♯‘𝑟) + 1) → (1...𝑛) = (1...((♯‘𝑟) + 1)))
8079oveq2d 7403 . . . . . . . . . 10 (𝑛 = ((♯‘𝑟) + 1) → (𝑟m (1...𝑛)) = (𝑟m (1...((♯‘𝑟) + 1))))
8180raleqdv 3299 . . . . . . . . 9 (𝑛 = ((♯‘𝑟) + 1) → (∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓))
8281rspcev 3588 . . . . . . . 8 ((((♯‘𝑟) + 1) ∈ ℕ ∧ ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓)
8367, 78, 82syl2anc 584 . . . . . . 7 (𝑟 ∈ Fin → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓)
8483rgen 3046 . . . . . 6 𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓
85 oveq1 7394 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑟m (1...𝑛)) = (𝑠m (1...𝑛)))
8685raleqdv 3299 . . . . . . . . . 10 (𝑟 = 𝑠 → (∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓))
8786rexbidv 3157 . . . . . . . . 9 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓))
88 oveq2 7395 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
8988oveq2d 7403 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑠m (1...𝑛)) = (𝑠m (1...𝑚)))
9089raleqdv 3299 . . . . . . . . . . 11 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑓))
91 breq2 5111 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑘 MonoAP 𝑓𝑘 MonoAP 𝑔))
9291cbvralvw 3215 . . . . . . . . . . 11 (∀𝑓 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
9390, 92bitrdi 287 . . . . . . . . . 10 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔))
9493cbvrexvw 3216 . . . . . . . . 9 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
9587, 94bitrdi 287 . . . . . . . 8 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔))
9695cbvralvw 3215 . . . . . . 7 (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
97 simplr 768 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑟 ∈ Fin)
98 simpll 766 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑘 ∈ (ℤ‘2))
99 simpr 484 . . . . . . . . . . 11 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
10094ralbii 3075 . . . . . . . . . . 11 (∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
10199, 100sylibr 234 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓)
10297, 98, 101vdwlem11 16962 . . . . . . . . 9 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)
103102ex 412 . . . . . . . 8 ((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
104103ralrimdva 3133 . . . . . . 7 (𝑘 ∈ (ℤ‘2) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10596, 104biimtrid 242 . . . . . 6 (𝑘 ∈ (ℤ‘2) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10655, 58, 61, 64, 84, 105uzind4i 12869 . . . . 5 (𝐾 ∈ (ℤ‘2) → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓)
107 oveq1 7394 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟m (1...𝑛)) = (𝑅m (1...𝑛)))
108107raleqdv 3299 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
109108rexbidv 3157 . . . . . 6 (𝑟 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
110109rspcv 3584 . . . . 5 (𝑅 ∈ Fin → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
1112, 106, 110syl2im 40 . . . 4 (𝜑 → (𝐾 ∈ (ℤ‘2) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
11252, 111jaod 859 . . 3 (𝜑 → ((𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
1131, 112biimtrid 242 . 2 (𝜑 → (𝐾 ∈ ℕ → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
114 fveq2 6858 . . . . . . 7 (𝐾 = 0 → (AP‘𝐾) = (AP‘0))
115114oveqd 7404 . . . . . 6 (𝐾 = 0 → (1(AP‘𝐾)1) = (1(AP‘0)1))
116 vdwap0 16947 . . . . . . 7 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘0)1) = ∅)
1177, 7, 116mp2an 692 . . . . . 6 (1(AP‘0)1) = ∅
118115, 117eqtrdi 2780 . . . . 5 (𝐾 = 0 → (1(AP‘𝐾)1) = ∅)
119 0ss 4363 . . . . 5 ∅ ⊆ (𝑓 “ {(𝑓‘1)})
120118, 119eqsstrdi 3991 . . . 4 (𝐾 = 0 → (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
121120ralrimivw 3129 . . 3 (𝐾 = 0 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
122121, 51syl5 34 . 2 (𝜑 → (𝐾 = 0 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
123 elnn0 12444 . . 3 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
12441, 123sylib 218 . 2 (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
125113, 122, 124mpjaod 860 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  ccnv 5637  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  chash 14295  APcvdwa 16936   MonoAP cvdwm 16937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-hash 14296  df-vdwap 16939  df-vdwmc 16940  df-vdwpc 16941
This theorem is referenced by:  vdw  16965
  Copyright terms: Public domain W3C validator