Step | Hyp | Ref
| Expression |
1 | | elnn1uz2 12905 |
. . 3
β’ (πΎ β β β (πΎ = 1 β¨ πΎ β
(β€β₯β2))) |
2 | | vdw.r |
. . . . . . . . . 10
β’ (π β π
β Fin) |
3 | | ovex 7438 |
. . . . . . . . . 10
β’ (1...1)
β V |
4 | | elmapg 8829 |
. . . . . . . . . 10
β’ ((π
β Fin β§ (1...1) β
V) β (π β (π
βm (1...1))
β π:(1...1)βΆπ
)) |
5 | 2, 3, 4 | sylancl 586 |
. . . . . . . . 9
β’ (π β (π β (π
βm (1...1)) β π:(1...1)βΆπ
)) |
6 | 5 | biimpa 477 |
. . . . . . . 8
β’ ((π β§ π β (π
βm (1...1))) β π:(1...1)βΆπ
) |
7 | | 1nn 12219 |
. . . . . . . . . 10
β’ 1 β
β |
8 | | vdwap1 16906 |
. . . . . . . . . 10
β’ ((1
β β β§ 1 β β) β (1(APβ1)1) =
{1}) |
9 | 7, 7, 8 | mp2an 690 |
. . . . . . . . 9
β’
(1(APβ1)1) = {1} |
10 | | 1z 12588 |
. . . . . . . . . . . 12
β’ 1 β
β€ |
11 | | elfz3 13507 |
. . . . . . . . . . . 12
β’ (1 β
β€ β 1 β (1...1)) |
12 | 10, 11 | mp1i 13 |
. . . . . . . . . . 11
β’ ((π β§ π:(1...1)βΆπ
) β 1 β (1...1)) |
13 | | eqidd 2733 |
. . . . . . . . . . 11
β’ ((π β§ π:(1...1)βΆπ
) β (πβ1) = (πβ1)) |
14 | | ffn 6714 |
. . . . . . . . . . . . 13
β’ (π:(1...1)βΆπ
β π Fn (1...1)) |
15 | 14 | adantl 482 |
. . . . . . . . . . . 12
β’ ((π β§ π:(1...1)βΆπ
) β π Fn (1...1)) |
16 | | fniniseg 7058 |
. . . . . . . . . . . 12
β’ (π Fn (1...1) β (1 β
(β‘π β {(πβ1)}) β (1 β (1...1) β§
(πβ1) = (πβ1)))) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
β’ ((π β§ π:(1...1)βΆπ
) β (1 β (β‘π β {(πβ1)}) β (1 β (1...1) β§
(πβ1) = (πβ1)))) |
18 | 12, 13, 17 | mpbir2and 711 |
. . . . . . . . . 10
β’ ((π β§ π:(1...1)βΆπ
) β 1 β (β‘π β {(πβ1)})) |
19 | 18 | snssd 4811 |
. . . . . . . . 9
β’ ((π β§ π:(1...1)βΆπ
) β {1} β (β‘π β {(πβ1)})) |
20 | 9, 19 | eqsstrid 4029 |
. . . . . . . 8
β’ ((π β§ π:(1...1)βΆπ
) β (1(APβ1)1) β (β‘π β {(πβ1)})) |
21 | 6, 20 | syldan 591 |
. . . . . . 7
β’ ((π β§ π β (π
βm (1...1))) β
(1(APβ1)1) β (β‘π β {(πβ1)})) |
22 | 21 | ralrimiva 3146 |
. . . . . 6
β’ (π β βπ β (π
βm (1...1))(1(APβ1)1)
β (β‘π β {(πβ1)})) |
23 | | fveq2 6888 |
. . . . . . . . 9
β’ (πΎ = 1 β (APβπΎ) =
(APβ1)) |
24 | 23 | oveqd 7422 |
. . . . . . . 8
β’ (πΎ = 1 β (1(APβπΎ)1) =
(1(APβ1)1)) |
25 | 24 | sseq1d 4012 |
. . . . . . 7
β’ (πΎ = 1 β ((1(APβπΎ)1) β (β‘π β {(πβ1)}) β (1(APβ1)1) β
(β‘π β {(πβ1)}))) |
26 | 25 | ralbidv 3177 |
. . . . . 6
β’ (πΎ = 1 β (βπ β (π
βm
(1...1))(1(APβπΎ)1)
β (β‘π β {(πβ1)}) β βπ β (π
βm (1...1))(1(APβ1)1)
β (β‘π β {(πβ1)}))) |
27 | 22, 26 | syl5ibrcom 246 |
. . . . 5
β’ (π β (πΎ = 1 β βπ β (π
βm
(1...1))(1(APβπΎ)1)
β (β‘π β {(πβ1)}))) |
28 | | oveq1 7412 |
. . . . . . . . . . . 12
β’ (π = 1 β (π(APβπΎ)π) = (1(APβπΎ)π)) |
29 | 28 | sseq1d 4012 |
. . . . . . . . . . 11
β’ (π = 1 β ((π(APβπΎ)π) β (β‘π β {(πβ1)}) β (1(APβπΎ)π) β (β‘π β {(πβ1)}))) |
30 | | oveq2 7413 |
. . . . . . . . . . . 12
β’ (π = 1 β (1(APβπΎ)π) = (1(APβπΎ)1)) |
31 | 30 | sseq1d 4012 |
. . . . . . . . . . 11
β’ (π = 1 β ((1(APβπΎ)π) β (β‘π β {(πβ1)}) β (1(APβπΎ)1) β (β‘π β {(πβ1)}))) |
32 | 29, 31 | rspc2ev 3623 |
. . . . . . . . . 10
β’ ((1
β β β§ 1 β β β§ (1(APβπΎ)1) β (β‘π β {(πβ1)})) β βπ β β βπ β β (π(APβπΎ)π) β (β‘π β {(πβ1)})) |
33 | 7, 7, 32 | mp3an12 1451 |
. . . . . . . . 9
β’
((1(APβπΎ)1)
β (β‘π β {(πβ1)}) β βπ β β βπ β β (π(APβπΎ)π) β (β‘π β {(πβ1)})) |
34 | | fvex 6901 |
. . . . . . . . . 10
β’ (πβ1) β
V |
35 | | sneq 4637 |
. . . . . . . . . . . . 13
β’ (π = (πβ1) β {π} = {(πβ1)}) |
36 | 35 | imaeq2d 6057 |
. . . . . . . . . . . 12
β’ (π = (πβ1) β (β‘π β {π}) = (β‘π β {(πβ1)})) |
37 | 36 | sseq2d 4013 |
. . . . . . . . . . 11
β’ (π = (πβ1) β ((π(APβπΎ)π) β (β‘π β {π}) β (π(APβπΎ)π) β (β‘π β {(πβ1)}))) |
38 | 37 | 2rexbidv 3219 |
. . . . . . . . . 10
β’ (π = (πβ1) β (βπ β β βπ β β (π(APβπΎ)π) β (β‘π β {π}) β βπ β β βπ β β (π(APβπΎ)π) β (β‘π β {(πβ1)}))) |
39 | 34, 38 | spcev 3596 |
. . . . . . . . 9
β’
(βπ β
β βπ β
β (π(APβπΎ)π) β (β‘π β {(πβ1)}) β βπβπ β β βπ β β (π(APβπΎ)π) β (β‘π β {π})) |
40 | 33, 39 | syl 17 |
. . . . . . . 8
β’
((1(APβπΎ)1)
β (β‘π β {(πβ1)}) β βπβπ β β βπ β β (π(APβπΎ)π) β (β‘π β {π})) |
41 | | vdw.k |
. . . . . . . . . 10
β’ (π β πΎ β
β0) |
42 | 41 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (π
βm (1...1))) β πΎ β
β0) |
43 | 3, 42, 6 | vdwmc 16907 |
. . . . . . . 8
β’ ((π β§ π β (π
βm (1...1))) β (πΎ MonoAP π β βπβπ β β βπ β β (π(APβπΎ)π) β (β‘π β {π}))) |
44 | 40, 43 | imbitrrid 245 |
. . . . . . 7
β’ ((π β§ π β (π
βm (1...1))) β
((1(APβπΎ)1) β
(β‘π β {(πβ1)}) β πΎ MonoAP π)) |
45 | 44 | ralimdva 3167 |
. . . . . 6
β’ (π β (βπ β (π
βm
(1...1))(1(APβπΎ)1)
β (β‘π β {(πβ1)}) β βπ β (π
βm (1...1))πΎ MonoAP π)) |
46 | | oveq2 7413 |
. . . . . . . . . 10
β’ (π = 1 β (1...π) = (1...1)) |
47 | 46 | oveq2d 7421 |
. . . . . . . . 9
β’ (π = 1 β (π
βm (1...π)) = (π
βm
(1...1))) |
48 | 47 | raleqdv 3325 |
. . . . . . . 8
β’ (π = 1 β (βπ β (π
βm (1...π))πΎ MonoAP π β βπ β (π
βm (1...1))πΎ MonoAP π)) |
49 | 48 | rspcev 3612 |
. . . . . . 7
β’ ((1
β β β§ βπ β (π
βm (1...1))πΎ MonoAP π) β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π) |
50 | 7, 49 | mpan 688 |
. . . . . 6
β’
(βπ β
(π
βm
(1...1))πΎ MonoAP π β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π) |
51 | 45, 50 | syl6 35 |
. . . . 5
β’ (π β (βπ β (π
βm
(1...1))(1(APβπΎ)1)
β (β‘π β {(πβ1)}) β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π)) |
52 | 27, 51 | syld 47 |
. . . 4
β’ (π β (πΎ = 1 β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π)) |
53 | | breq1 5150 |
. . . . . . . 8
β’ (π₯ = 2 β (π₯ MonoAP π β 2 MonoAP π)) |
54 | 53 | rexralbidv 3220 |
. . . . . . 7
β’ (π₯ = 2 β (βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β β βπ β (π βm (1...π))2 MonoAP π)) |
55 | 54 | ralbidv 3177 |
. . . . . 6
β’ (π₯ = 2 β (βπ β Fin βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))2 MonoAP π)) |
56 | | breq1 5150 |
. . . . . . . 8
β’ (π₯ = π β (π₯ MonoAP π β π MonoAP π)) |
57 | 56 | rexralbidv 3220 |
. . . . . . 7
β’ (π₯ = π β (βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β β βπ β (π βm (1...π))π MonoAP π)) |
58 | 57 | ralbidv 3177 |
. . . . . 6
β’ (π₯ = π β (βπ β Fin βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π)) |
59 | | breq1 5150 |
. . . . . . . 8
β’ (π₯ = (π + 1) β (π₯ MonoAP π β (π + 1) MonoAP π)) |
60 | 59 | rexralbidv 3220 |
. . . . . . 7
β’ (π₯ = (π + 1) β (βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β β βπ β (π βm (1...π))(π + 1) MonoAP π)) |
61 | 60 | ralbidv 3177 |
. . . . . 6
β’ (π₯ = (π + 1) β (βπ β Fin βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))(π + 1) MonoAP π)) |
62 | | breq1 5150 |
. . . . . . . 8
β’ (π₯ = πΎ β (π₯ MonoAP π β πΎ MonoAP π)) |
63 | 62 | rexralbidv 3220 |
. . . . . . 7
β’ (π₯ = πΎ β (βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β β βπ β (π βm (1...π))πΎ MonoAP π)) |
64 | 63 | ralbidv 3177 |
. . . . . 6
β’ (π₯ = πΎ β (βπ β Fin βπ β β βπ β (π βm (1...π))π₯ MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))πΎ MonoAP π)) |
65 | | hashcl 14312 |
. . . . . . . . 9
β’ (π β Fin β
(β―βπ) β
β0) |
66 | | nn0p1nn 12507 |
. . . . . . . . 9
β’
((β―βπ)
β β0 β ((β―βπ) + 1) β β) |
67 | 65, 66 | syl 17 |
. . . . . . . 8
β’ (π β Fin β
((β―βπ) + 1)
β β) |
68 | | simpll 765 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π β (π βm
(1...((β―βπ) +
1)))) β§ Β¬ 2 MonoAP π) β π β Fin) |
69 | | simplr 767 |
. . . . . . . . . . . 12
β’ (((π β Fin β§ π β (π βm
(1...((β―βπ) +
1)))) β§ Β¬ 2 MonoAP π) β π β (π βm
(1...((β―βπ) +
1)))) |
70 | | vex 3478 |
. . . . . . . . . . . . 13
β’ π β V |
71 | | ovex 7438 |
. . . . . . . . . . . . 13
β’
(1...((β―βπ) + 1)) β V |
72 | 70, 71 | elmap 8861 |
. . . . . . . . . . . 12
β’ (π β (π βm
(1...((β―βπ) +
1))) β π:(1...((β―βπ) + 1))βΆπ) |
73 | 69, 72 | sylib 217 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π β (π βm
(1...((β―βπ) +
1)))) β§ Β¬ 2 MonoAP π) β π:(1...((β―βπ) + 1))βΆπ) |
74 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π β (π βm
(1...((β―βπ) +
1)))) β§ Β¬ 2 MonoAP π) β Β¬ 2 MonoAP π) |
75 | 68, 73, 74 | vdwlem12 16921 |
. . . . . . . . . 10
β’ Β¬
((π β Fin β§ π β (π βm
(1...((β―βπ) +
1)))) β§ Β¬ 2 MonoAP π) |
76 | | iman 402 |
. . . . . . . . . 10
β’ (((π β Fin β§ π β (π βm
(1...((β―βπ) +
1)))) β 2 MonoAP π)
β Β¬ ((π β Fin
β§ π β (π βm
(1...((β―βπ) +
1)))) β§ Β¬ 2 MonoAP π)) |
77 | 75, 76 | mpbir 230 |
. . . . . . . . 9
β’ ((π β Fin β§ π β (π βm
(1...((β―βπ) +
1)))) β 2 MonoAP π) |
78 | 77 | ralrimiva 3146 |
. . . . . . . 8
β’ (π β Fin β βπ β (π βm
(1...((β―βπ) +
1)))2 MonoAP π) |
79 | | oveq2 7413 |
. . . . . . . . . . 11
β’ (π = ((β―βπ) + 1) β (1...π) = (1...((β―βπ) + 1))) |
80 | 79 | oveq2d 7421 |
. . . . . . . . . 10
β’ (π = ((β―βπ) + 1) β (π βm (1...π)) = (π βm
(1...((β―βπ) +
1)))) |
81 | 80 | raleqdv 3325 |
. . . . . . . . 9
β’ (π = ((β―βπ) + 1) β (βπ β (π βm (1...π))2 MonoAP π β βπ β (π βm
(1...((β―βπ) +
1)))2 MonoAP π)) |
82 | 81 | rspcev 3612 |
. . . . . . . 8
β’
((((β―βπ)
+ 1) β β β§ βπ β (π βm
(1...((β―βπ) +
1)))2 MonoAP π) β
βπ β β
βπ β (π βm (1...π))2 MonoAP π) |
83 | 67, 78, 82 | syl2anc 584 |
. . . . . . 7
β’ (π β Fin β βπ β β βπ β (π βm (1...π))2 MonoAP π) |
84 | 83 | rgen 3063 |
. . . . . 6
β’
βπ β Fin
βπ β β
βπ β (π βm (1...π))2 MonoAP π |
85 | | oveq1 7412 |
. . . . . . . . . . 11
β’ (π = π β (π βm (1...π)) = (π βm (1...π))) |
86 | 85 | raleqdv 3325 |
. . . . . . . . . 10
β’ (π = π β (βπ β (π βm (1...π))π MonoAP π β βπ β (π βm (1...π))π MonoAP π)) |
87 | 86 | rexbidv 3178 |
. . . . . . . . 9
β’ (π = π β (βπ β β βπ β (π βm (1...π))π MonoAP π β βπ β β βπ β (π βm (1...π))π MonoAP π)) |
88 | | oveq2 7413 |
. . . . . . . . . . . . 13
β’ (π = π β (1...π) = (1...π)) |
89 | 88 | oveq2d 7421 |
. . . . . . . . . . . 12
β’ (π = π β (π βm (1...π)) = (π βm (1...π))) |
90 | 89 | raleqdv 3325 |
. . . . . . . . . . 11
β’ (π = π β (βπ β (π βm (1...π))π MonoAP π β βπ β (π βm (1...π))π MonoAP π)) |
91 | | breq2 5151 |
. . . . . . . . . . . 12
β’ (π = π β (π MonoAP π β π MonoAP π)) |
92 | 91 | cbvralvw 3234 |
. . . . . . . . . . 11
β’
(βπ β
(π βm
(1...π))π MonoAP π β βπ β (π βm (1...π))π MonoAP π) |
93 | 90, 92 | bitrdi 286 |
. . . . . . . . . 10
β’ (π = π β (βπ β (π βm (1...π))π MonoAP π β βπ β (π βm (1...π))π MonoAP π)) |
94 | 93 | cbvrexvw 3235 |
. . . . . . . . 9
β’
(βπ β
β βπ β
(π βm
(1...π))π MonoAP π β βπ β β βπ β (π βm (1...π))π MonoAP π) |
95 | 87, 94 | bitrdi 286 |
. . . . . . . 8
β’ (π = π β (βπ β β βπ β (π βm (1...π))π MonoAP π β βπ β β βπ β (π βm (1...π))π MonoAP π)) |
96 | 95 | cbvralvw 3234 |
. . . . . . 7
β’
(βπ β
Fin βπ β β
βπ β (π βm (1...π))π MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) |
97 | | simplr 767 |
. . . . . . . . . 10
β’ (((π β
(β€β₯β2) β§ π β Fin) β§ βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) β π β Fin) |
98 | | simpll 765 |
. . . . . . . . . 10
β’ (((π β
(β€β₯β2) β§ π β Fin) β§ βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) β π β
(β€β₯β2)) |
99 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π β
(β€β₯β2) β§ π β Fin) β§ βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) β βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) |
100 | 94 | ralbii 3093 |
. . . . . . . . . . 11
β’
(βπ β
Fin βπ β β
βπ β (π βm (1...π))π MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) |
101 | 99, 100 | sylibr 233 |
. . . . . . . . . 10
β’ (((π β
(β€β₯β2) β§ π β Fin) β§ βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) β βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) |
102 | 97, 98, 101 | vdwlem11 16920 |
. . . . . . . . 9
β’ (((π β
(β€β₯β2) β§ π β Fin) β§ βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π) β βπ β β βπ β (π βm (1...π))(π + 1) MonoAP π) |
103 | 102 | ex 413 |
. . . . . . . 8
β’ ((π β
(β€β₯β2) β§ π β Fin) β (βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π β βπ β β βπ β (π βm (1...π))(π + 1) MonoAP π)) |
104 | 103 | ralrimdva 3154 |
. . . . . . 7
β’ (π β
(β€β₯β2) β (βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))(π + 1) MonoAP π)) |
105 | 96, 104 | biimtrid 241 |
. . . . . 6
β’ (π β
(β€β₯β2) β (βπ β Fin βπ β β βπ β (π βm (1...π))π MonoAP π β βπ β Fin βπ β β βπ β (π βm (1...π))(π + 1) MonoAP π)) |
106 | 55, 58, 61, 64, 84, 105 | uzind4i 12890 |
. . . . 5
β’ (πΎ β
(β€β₯β2) β βπ β Fin βπ β β βπ β (π βm (1...π))πΎ MonoAP π) |
107 | | oveq1 7412 |
. . . . . . . 8
β’ (π = π
β (π βm (1...π)) = (π
βm (1...π))) |
108 | 107 | raleqdv 3325 |
. . . . . . 7
β’ (π = π
β (βπ β (π βm (1...π))πΎ MonoAP π β βπ β (π
βm (1...π))πΎ MonoAP π)) |
109 | 108 | rexbidv 3178 |
. . . . . 6
β’ (π = π
β (βπ β β βπ β (π βm (1...π))πΎ MonoAP π β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π)) |
110 | 109 | rspcv 3608 |
. . . . 5
β’ (π
β Fin β
(βπ β Fin
βπ β β
βπ β (π βm (1...π))πΎ MonoAP π β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π)) |
111 | 2, 106, 110 | syl2im 40 |
. . . 4
β’ (π β (πΎ β (β€β₯β2)
β βπ β
β βπ β
(π
βm
(1...π))πΎ MonoAP π)) |
112 | 52, 111 | jaod 857 |
. . 3
β’ (π β ((πΎ = 1 β¨ πΎ β (β€β₯β2))
β βπ β
β βπ β
(π
βm
(1...π))πΎ MonoAP π)) |
113 | 1, 112 | biimtrid 241 |
. 2
β’ (π β (πΎ β β β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π)) |
114 | | fveq2 6888 |
. . . . . . 7
β’ (πΎ = 0 β (APβπΎ) =
(APβ0)) |
115 | 114 | oveqd 7422 |
. . . . . 6
β’ (πΎ = 0 β (1(APβπΎ)1) =
(1(APβ0)1)) |
116 | | vdwap0 16905 |
. . . . . . 7
β’ ((1
β β β§ 1 β β) β (1(APβ0)1) =
β
) |
117 | 7, 7, 116 | mp2an 690 |
. . . . . 6
β’
(1(APβ0)1) = β
|
118 | 115, 117 | eqtrdi 2788 |
. . . . 5
β’ (πΎ = 0 β (1(APβπΎ)1) = β
) |
119 | | 0ss 4395 |
. . . . 5
β’ β
β (β‘π β {(πβ1)}) |
120 | 118, 119 | eqsstrdi 4035 |
. . . 4
β’ (πΎ = 0 β (1(APβπΎ)1) β (β‘π β {(πβ1)})) |
121 | 120 | ralrimivw 3150 |
. . 3
β’ (πΎ = 0 β βπ β (π
βm
(1...1))(1(APβπΎ)1)
β (β‘π β {(πβ1)})) |
122 | 121, 51 | syl5 34 |
. 2
β’ (π β (πΎ = 0 β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π)) |
123 | | elnn0 12470 |
. . 3
β’ (πΎ β β0
β (πΎ β β
β¨ πΎ =
0)) |
124 | 41, 123 | sylib 217 |
. 2
β’ (π β (πΎ β β β¨ πΎ = 0)) |
125 | 113, 122,
124 | mpjaod 858 |
1
β’ (π β βπ β β βπ β (π
βm (1...π))πΎ MonoAP π) |