MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem13 Structured version   Visualization version   GIF version

Theorem vdwlem13 16922
Description: Lemma for vdw 16923. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (πœ‘ β†’ 𝑅 ∈ Fin)
vdw.k (πœ‘ β†’ 𝐾 ∈ β„•0)
Assertion
Ref Expression
vdwlem13 (πœ‘ β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)
Distinct variable groups:   πœ‘,𝑛,𝑓   𝑓,𝐾,𝑛   𝑅,𝑓,𝑛   πœ‘,𝑓

Proof of Theorem vdwlem13
Dummy variables π‘Ž 𝑐 𝑑 𝑔 π‘˜ π‘š π‘₯ π‘Ÿ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12905 . . 3 (𝐾 ∈ β„• ↔ (𝐾 = 1 ∨ 𝐾 ∈ (β„€β‰₯β€˜2)))
2 vdw.r . . . . . . . . . 10 (πœ‘ β†’ 𝑅 ∈ Fin)
3 ovex 7438 . . . . . . . . . 10 (1...1) ∈ V
4 elmapg 8829 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...1) ∈ V) β†’ (𝑓 ∈ (𝑅 ↑m (1...1)) ↔ 𝑓:(1...1)βŸΆπ‘…))
52, 3, 4sylancl 586 . . . . . . . . 9 (πœ‘ β†’ (𝑓 ∈ (𝑅 ↑m (1...1)) ↔ 𝑓:(1...1)βŸΆπ‘…))
65biimpa 477 . . . . . . . 8 ((πœ‘ ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) β†’ 𝑓:(1...1)βŸΆπ‘…)
7 1nn 12219 . . . . . . . . . 10 1 ∈ β„•
8 vdwap1 16906 . . . . . . . . . 10 ((1 ∈ β„• ∧ 1 ∈ β„•) β†’ (1(APβ€˜1)1) = {1})
97, 7, 8mp2an 690 . . . . . . . . 9 (1(APβ€˜1)1) = {1}
10 1z 12588 . . . . . . . . . . . 12 1 ∈ β„€
11 elfz3 13507 . . . . . . . . . . . 12 (1 ∈ β„€ β†’ 1 ∈ (1...1))
1210, 11mp1i 13 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑓:(1...1)βŸΆπ‘…) β†’ 1 ∈ (1...1))
13 eqidd 2733 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑓:(1...1)βŸΆπ‘…) β†’ (π‘“β€˜1) = (π‘“β€˜1))
14 ffn 6714 . . . . . . . . . . . . 13 (𝑓:(1...1)βŸΆπ‘… β†’ 𝑓 Fn (1...1))
1514adantl 482 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑓:(1...1)βŸΆπ‘…) β†’ 𝑓 Fn (1...1))
16 fniniseg 7058 . . . . . . . . . . . 12 (𝑓 Fn (1...1) β†’ (1 ∈ (◑𝑓 β€œ {(π‘“β€˜1)}) ↔ (1 ∈ (1...1) ∧ (π‘“β€˜1) = (π‘“β€˜1))))
1715, 16syl 17 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑓:(1...1)βŸΆπ‘…) β†’ (1 ∈ (◑𝑓 β€œ {(π‘“β€˜1)}) ↔ (1 ∈ (1...1) ∧ (π‘“β€˜1) = (π‘“β€˜1))))
1812, 13, 17mpbir2and 711 . . . . . . . . . 10 ((πœ‘ ∧ 𝑓:(1...1)βŸΆπ‘…) β†’ 1 ∈ (◑𝑓 β€œ {(π‘“β€˜1)}))
1918snssd 4811 . . . . . . . . 9 ((πœ‘ ∧ 𝑓:(1...1)βŸΆπ‘…) β†’ {1} βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
209, 19eqsstrid 4029 . . . . . . . 8 ((πœ‘ ∧ 𝑓:(1...1)βŸΆπ‘…) β†’ (1(APβ€˜1)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
216, 20syldan 591 . . . . . . 7 ((πœ‘ ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) β†’ (1(APβ€˜1)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
2221ralrimiva 3146 . . . . . 6 (πœ‘ β†’ βˆ€π‘“ ∈ (𝑅 ↑m (1...1))(1(APβ€˜1)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
23 fveq2 6888 . . . . . . . . 9 (𝐾 = 1 β†’ (APβ€˜πΎ) = (APβ€˜1))
2423oveqd 7422 . . . . . . . 8 (𝐾 = 1 β†’ (1(APβ€˜πΎ)1) = (1(APβ€˜1)1))
2524sseq1d 4012 . . . . . . 7 (𝐾 = 1 β†’ ((1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) ↔ (1(APβ€˜1)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})))
2625ralbidv 3177 . . . . . 6 (𝐾 = 1 β†’ (βˆ€π‘“ ∈ (𝑅 ↑m (1...1))(1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) ↔ βˆ€π‘“ ∈ (𝑅 ↑m (1...1))(1(APβ€˜1)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})))
2722, 26syl5ibrcom 246 . . . . 5 (πœ‘ β†’ (𝐾 = 1 β†’ βˆ€π‘“ ∈ (𝑅 ↑m (1...1))(1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})))
28 oveq1 7412 . . . . . . . . . . . 12 (π‘Ž = 1 β†’ (π‘Ž(APβ€˜πΎ)𝑑) = (1(APβ€˜πΎ)𝑑))
2928sseq1d 4012 . . . . . . . . . . 11 (π‘Ž = 1 β†’ ((π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) ↔ (1(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})))
30 oveq2 7413 . . . . . . . . . . . 12 (𝑑 = 1 β†’ (1(APβ€˜πΎ)𝑑) = (1(APβ€˜πΎ)1))
3130sseq1d 4012 . . . . . . . . . . 11 (𝑑 = 1 β†’ ((1(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) ↔ (1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})))
3229, 31rspc2ev 3623 . . . . . . . . . 10 ((1 ∈ β„• ∧ 1 ∈ β„• ∧ (1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})) β†’ βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
337, 7, 32mp3an12 1451 . . . . . . . . 9 ((1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) β†’ βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
34 fvex 6901 . . . . . . . . . 10 (π‘“β€˜1) ∈ V
35 sneq 4637 . . . . . . . . . . . . 13 (𝑐 = (π‘“β€˜1) β†’ {𝑐} = {(π‘“β€˜1)})
3635imaeq2d 6057 . . . . . . . . . . . 12 (𝑐 = (π‘“β€˜1) β†’ (◑𝑓 β€œ {𝑐}) = (◑𝑓 β€œ {(π‘“β€˜1)}))
3736sseq2d 4013 . . . . . . . . . . 11 (𝑐 = (π‘“β€˜1) β†’ ((π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {𝑐}) ↔ (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})))
38372rexbidv 3219 . . . . . . . . . 10 (𝑐 = (π‘“β€˜1) β†’ (βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {𝑐}) ↔ βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})))
3934, 38spcev 3596 . . . . . . . . 9 (βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) β†’ βˆƒπ‘βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {𝑐}))
4033, 39syl 17 . . . . . . . 8 ((1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) β†’ βˆƒπ‘βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {𝑐}))
41 vdw.k . . . . . . . . . 10 (πœ‘ β†’ 𝐾 ∈ β„•0)
4241adantr 481 . . . . . . . . 9 ((πœ‘ ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) β†’ 𝐾 ∈ β„•0)
433, 42, 6vdwmc 16907 . . . . . . . 8 ((πœ‘ ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) β†’ (𝐾 MonoAP 𝑓 ↔ βˆƒπ‘βˆƒπ‘Ž ∈ β„• βˆƒπ‘‘ ∈ β„• (π‘Ž(APβ€˜πΎ)𝑑) βŠ† (◑𝑓 β€œ {𝑐})))
4440, 43imbitrrid 245 . . . . . . 7 ((πœ‘ ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) β†’ ((1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) β†’ 𝐾 MonoAP 𝑓))
4544ralimdva 3167 . . . . . 6 (πœ‘ β†’ (βˆ€π‘“ ∈ (𝑅 ↑m (1...1))(1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) β†’ βˆ€π‘“ ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓))
46 oveq2 7413 . . . . . . . . . 10 (𝑛 = 1 β†’ (1...𝑛) = (1...1))
4746oveq2d 7421 . . . . . . . . 9 (𝑛 = 1 β†’ (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m (1...1)))
4847raleqdv 3325 . . . . . . . 8 (𝑛 = 1 β†’ (βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ βˆ€π‘“ ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓))
4948rspcev 3612 . . . . . . 7 ((1 ∈ β„• ∧ βˆ€π‘“ ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓) β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)
507, 49mpan 688 . . . . . 6 (βˆ€π‘“ ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓 β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)
5145, 50syl6 35 . . . . 5 (πœ‘ β†’ (βˆ€π‘“ ∈ (𝑅 ↑m (1...1))(1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}) β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
5227, 51syld 47 . . . 4 (πœ‘ β†’ (𝐾 = 1 β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
53 breq1 5150 . . . . . . . 8 (π‘₯ = 2 β†’ (π‘₯ MonoAP 𝑓 ↔ 2 MonoAP 𝑓))
5453rexralbidv 3220 . . . . . . 7 (π‘₯ = 2 β†’ (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))2 MonoAP 𝑓))
5554ralbidv 3177 . . . . . 6 (π‘₯ = 2 β†’ (βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))2 MonoAP 𝑓))
56 breq1 5150 . . . . . . . 8 (π‘₯ = π‘˜ β†’ (π‘₯ MonoAP 𝑓 ↔ π‘˜ MonoAP 𝑓))
5756rexralbidv 3220 . . . . . . 7 (π‘₯ = π‘˜ β†’ (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘˜ MonoAP 𝑓))
5857ralbidv 3177 . . . . . 6 (π‘₯ = π‘˜ β†’ (βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘˜ MonoAP 𝑓))
59 breq1 5150 . . . . . . . 8 (π‘₯ = (π‘˜ + 1) β†’ (π‘₯ MonoAP 𝑓 ↔ (π‘˜ + 1) MonoAP 𝑓))
6059rexralbidv 3220 . . . . . . 7 (π‘₯ = (π‘˜ + 1) β†’ (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))(π‘˜ + 1) MonoAP 𝑓))
6160ralbidv 3177 . . . . . 6 (π‘₯ = (π‘˜ + 1) β†’ (βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))(π‘˜ + 1) MonoAP 𝑓))
62 breq1 5150 . . . . . . . 8 (π‘₯ = 𝐾 β†’ (π‘₯ MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑓))
6362rexralbidv 3220 . . . . . . 7 (π‘₯ = 𝐾 β†’ (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))𝐾 MonoAP 𝑓))
6463ralbidv 3177 . . . . . 6 (π‘₯ = 𝐾 β†’ (βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘₯ MonoAP 𝑓 ↔ βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))𝐾 MonoAP 𝑓))
65 hashcl 14312 . . . . . . . . 9 (π‘Ÿ ∈ Fin β†’ (β™―β€˜π‘Ÿ) ∈ β„•0)
66 nn0p1nn 12507 . . . . . . . . 9 ((β™―β€˜π‘Ÿ) ∈ β„•0 β†’ ((β™―β€˜π‘Ÿ) + 1) ∈ β„•)
6765, 66syl 17 . . . . . . . 8 (π‘Ÿ ∈ Fin β†’ ((β™―β€˜π‘Ÿ) + 1) ∈ β„•)
68 simpll 765 . . . . . . . . . . 11 (((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) ∧ Β¬ 2 MonoAP 𝑓) β†’ π‘Ÿ ∈ Fin)
69 simplr 767 . . . . . . . . . . . 12 (((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) ∧ Β¬ 2 MonoAP 𝑓) β†’ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1))))
70 vex 3478 . . . . . . . . . . . . 13 π‘Ÿ ∈ V
71 ovex 7438 . . . . . . . . . . . . 13 (1...((β™―β€˜π‘Ÿ) + 1)) ∈ V
7270, 71elmap 8861 . . . . . . . . . . . 12 (𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1))) ↔ 𝑓:(1...((β™―β€˜π‘Ÿ) + 1))βŸΆπ‘Ÿ)
7369, 72sylib 217 . . . . . . . . . . 11 (((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) ∧ Β¬ 2 MonoAP 𝑓) β†’ 𝑓:(1...((β™―β€˜π‘Ÿ) + 1))βŸΆπ‘Ÿ)
74 simpr 485 . . . . . . . . . . 11 (((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) ∧ Β¬ 2 MonoAP 𝑓) β†’ Β¬ 2 MonoAP 𝑓)
7568, 73, 74vdwlem12 16921 . . . . . . . . . 10 Β¬ ((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) ∧ Β¬ 2 MonoAP 𝑓)
76 iman 402 . . . . . . . . . 10 (((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) β†’ 2 MonoAP 𝑓) ↔ Β¬ ((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) ∧ Β¬ 2 MonoAP 𝑓))
7775, 76mpbir 230 . . . . . . . . 9 ((π‘Ÿ ∈ Fin ∧ 𝑓 ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))) β†’ 2 MonoAP 𝑓)
7877ralrimiva 3146 . . . . . . . 8 (π‘Ÿ ∈ Fin β†’ βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))2 MonoAP 𝑓)
79 oveq2 7413 . . . . . . . . . . 11 (𝑛 = ((β™―β€˜π‘Ÿ) + 1) β†’ (1...𝑛) = (1...((β™―β€˜π‘Ÿ) + 1)))
8079oveq2d 7421 . . . . . . . . . 10 (𝑛 = ((β™―β€˜π‘Ÿ) + 1) β†’ (π‘Ÿ ↑m (1...𝑛)) = (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1))))
8180raleqdv 3325 . . . . . . . . 9 (𝑛 = ((β™―β€˜π‘Ÿ) + 1) β†’ (βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))2 MonoAP 𝑓 ↔ βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))2 MonoAP 𝑓))
8281rspcev 3612 . . . . . . . 8 ((((β™―β€˜π‘Ÿ) + 1) ∈ β„• ∧ βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...((β™―β€˜π‘Ÿ) + 1)))2 MonoAP 𝑓) β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))2 MonoAP 𝑓)
8367, 78, 82syl2anc 584 . . . . . . 7 (π‘Ÿ ∈ Fin β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))2 MonoAP 𝑓)
8483rgen 3063 . . . . . 6 βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))2 MonoAP 𝑓
85 oveq1 7412 . . . . . . . . . . 11 (π‘Ÿ = 𝑠 β†’ (π‘Ÿ ↑m (1...𝑛)) = (𝑠 ↑m (1...𝑛)))
8685raleqdv 3325 . . . . . . . . . 10 (π‘Ÿ = 𝑠 β†’ (βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆ€π‘“ ∈ (𝑠 ↑m (1...𝑛))π‘˜ MonoAP 𝑓))
8786rexbidv 3178 . . . . . . . . 9 (π‘Ÿ = 𝑠 β†’ (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑠 ↑m (1...𝑛))π‘˜ MonoAP 𝑓))
88 oveq2 7413 . . . . . . . . . . . . 13 (𝑛 = π‘š β†’ (1...𝑛) = (1...π‘š))
8988oveq2d 7421 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ (𝑠 ↑m (1...𝑛)) = (𝑠 ↑m (1...π‘š)))
9089raleqdv 3325 . . . . . . . . . . 11 (𝑛 = π‘š β†’ (βˆ€π‘“ ∈ (𝑠 ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆ€π‘“ ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑓))
91 breq2 5151 . . . . . . . . . . . 12 (𝑓 = 𝑔 β†’ (π‘˜ MonoAP 𝑓 ↔ π‘˜ MonoAP 𝑔))
9291cbvralvw 3234 . . . . . . . . . . 11 (βˆ€π‘“ ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑓 ↔ βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔)
9390, 92bitrdi 286 . . . . . . . . . 10 (𝑛 = π‘š β†’ (βˆ€π‘“ ∈ (𝑠 ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔))
9493cbvrexvw 3235 . . . . . . . . 9 (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑠 ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔)
9587, 94bitrdi 286 . . . . . . . 8 (π‘Ÿ = 𝑠 β†’ (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔))
9695cbvralvw 3234 . . . . . . 7 (βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔)
97 simplr 767 . . . . . . . . . 10 (((π‘˜ ∈ (β„€β‰₯β€˜2) ∧ π‘Ÿ ∈ Fin) ∧ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔) β†’ π‘Ÿ ∈ Fin)
98 simpll 765 . . . . . . . . . 10 (((π‘˜ ∈ (β„€β‰₯β€˜2) ∧ π‘Ÿ ∈ Fin) ∧ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔) β†’ π‘˜ ∈ (β„€β‰₯β€˜2))
99 simpr 485 . . . . . . . . . . 11 (((π‘˜ ∈ (β„€β‰₯β€˜2) ∧ π‘Ÿ ∈ Fin) ∧ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔) β†’ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔)
10094ralbii 3093 . . . . . . . . . . 11 (βˆ€π‘  ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑠 ↑m (1...𝑛))π‘˜ MonoAP 𝑓 ↔ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔)
10199, 100sylibr 233 . . . . . . . . . 10 (((π‘˜ ∈ (β„€β‰₯β€˜2) ∧ π‘Ÿ ∈ Fin) ∧ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔) β†’ βˆ€π‘  ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑠 ↑m (1...𝑛))π‘˜ MonoAP 𝑓)
10297, 98, 101vdwlem11 16920 . . . . . . . . 9 (((π‘˜ ∈ (β„€β‰₯β€˜2) ∧ π‘Ÿ ∈ Fin) ∧ βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔) β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))(π‘˜ + 1) MonoAP 𝑓)
103102ex 413 . . . . . . . 8 ((π‘˜ ∈ (β„€β‰₯β€˜2) ∧ π‘Ÿ ∈ Fin) β†’ (βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔 β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))(π‘˜ + 1) MonoAP 𝑓))
104103ralrimdva 3154 . . . . . . 7 (π‘˜ ∈ (β„€β‰₯β€˜2) β†’ (βˆ€π‘  ∈ Fin βˆƒπ‘š ∈ β„• βˆ€π‘” ∈ (𝑠 ↑m (1...π‘š))π‘˜ MonoAP 𝑔 β†’ βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))(π‘˜ + 1) MonoAP 𝑓))
10596, 104biimtrid 241 . . . . . 6 (π‘˜ ∈ (β„€β‰₯β€˜2) β†’ (βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))π‘˜ MonoAP 𝑓 β†’ βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))(π‘˜ + 1) MonoAP 𝑓))
10655, 58, 61, 64, 84, 105uzind4i 12890 . . . . 5 (𝐾 ∈ (β„€β‰₯β€˜2) β†’ βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))𝐾 MonoAP 𝑓)
107 oveq1 7412 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (π‘Ÿ ↑m (1...𝑛)) = (𝑅 ↑m (1...𝑛)))
108107raleqdv 3325 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ (βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
109108rexbidv 3178 . . . . . 6 (π‘Ÿ = 𝑅 β†’ (βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
110109rspcv 3608 . . . . 5 (𝑅 ∈ Fin β†’ (βˆ€π‘Ÿ ∈ Fin βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (π‘Ÿ ↑m (1...𝑛))𝐾 MonoAP 𝑓 β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
1112, 106, 110syl2im 40 . . . 4 (πœ‘ β†’ (𝐾 ∈ (β„€β‰₯β€˜2) β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
11252, 111jaod 857 . . 3 (πœ‘ β†’ ((𝐾 = 1 ∨ 𝐾 ∈ (β„€β‰₯β€˜2)) β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
1131, 112biimtrid 241 . 2 (πœ‘ β†’ (𝐾 ∈ β„• β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
114 fveq2 6888 . . . . . . 7 (𝐾 = 0 β†’ (APβ€˜πΎ) = (APβ€˜0))
115114oveqd 7422 . . . . . 6 (𝐾 = 0 β†’ (1(APβ€˜πΎ)1) = (1(APβ€˜0)1))
116 vdwap0 16905 . . . . . . 7 ((1 ∈ β„• ∧ 1 ∈ β„•) β†’ (1(APβ€˜0)1) = βˆ…)
1177, 7, 116mp2an 690 . . . . . 6 (1(APβ€˜0)1) = βˆ…
118115, 117eqtrdi 2788 . . . . 5 (𝐾 = 0 β†’ (1(APβ€˜πΎ)1) = βˆ…)
119 0ss 4395 . . . . 5 βˆ… βŠ† (◑𝑓 β€œ {(π‘“β€˜1)})
120118, 119eqsstrdi 4035 . . . 4 (𝐾 = 0 β†’ (1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
121120ralrimivw 3150 . . 3 (𝐾 = 0 β†’ βˆ€π‘“ ∈ (𝑅 ↑m (1...1))(1(APβ€˜πΎ)1) βŠ† (◑𝑓 β€œ {(π‘“β€˜1)}))
122121, 51syl5 34 . 2 (πœ‘ β†’ (𝐾 = 0 β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓))
123 elnn0 12470 . . 3 (𝐾 ∈ β„•0 ↔ (𝐾 ∈ β„• ∨ 𝐾 = 0))
12441, 123sylib 217 . 2 (πœ‘ β†’ (𝐾 ∈ β„• ∨ 𝐾 = 0))
125113, 122, 124mpjaod 858 1 (πœ‘ β†’ βˆƒπ‘› ∈ β„• βˆ€π‘“ ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321  {csn 4627   class class class wbr 5147  β—‘ccnv 5674   β€œ cima 5678   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  Fincfn 8935  0cc0 11106  1c1 11107   + caddc 11109  β„•cn 12208  2c2 12263  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  β™―chash 14286  APcvdwa 16894   MonoAP cvdwm 16895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-hash 14287  df-vdwap 16897  df-vdwmc 16898  df-vdwpc 16899
This theorem is referenced by:  vdw  16923
  Copyright terms: Public domain W3C validator