MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem13 Structured version   Visualization version   GIF version

Theorem vdwlem13 16331
Description: Lemma for vdw 16332. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdw.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
vdwlem13 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝐾,𝑛   𝑅,𝑓,𝑛   𝜑,𝑓

Proof of Theorem vdwlem13
Dummy variables 𝑎 𝑐 𝑑 𝑔 𝑘 𝑚 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12328 . . 3 (𝐾 ∈ ℕ ↔ (𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)))
2 vdw.r . . . . . . . . . 10 (𝜑𝑅 ∈ Fin)
3 ovex 7191 . . . . . . . . . 10 (1...1) ∈ V
4 elmapg 8421 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...1) ∈ V) → (𝑓 ∈ (𝑅m (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
52, 3, 4sylancl 588 . . . . . . . . 9 (𝜑 → (𝑓 ∈ (𝑅m (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
65biimpa 479 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅m (1...1))) → 𝑓:(1...1)⟶𝑅)
7 1nn 11651 . . . . . . . . . 10 1 ∈ ℕ
8 vdwap1 16315 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘1)1) = {1})
97, 7, 8mp2an 690 . . . . . . . . 9 (1(AP‘1)1) = {1}
10 1z 12015 . . . . . . . . . . . 12 1 ∈ ℤ
11 elfz3 12920 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ (1...1))
1210, 11mp1i 13 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (1...1))
13 eqidd 2824 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (𝑓‘1) = (𝑓‘1))
14 ffn 6516 . . . . . . . . . . . . 13 (𝑓:(1...1)⟶𝑅𝑓 Fn (1...1))
1514adantl 484 . . . . . . . . . . . 12 ((𝜑𝑓:(1...1)⟶𝑅) → 𝑓 Fn (1...1))
16 fniniseg 6832 . . . . . . . . . . . 12 (𝑓 Fn (1...1) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1715, 16syl 17 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1812, 13, 17mpbir2and 711 . . . . . . . . . 10 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (𝑓 “ {(𝑓‘1)}))
1918snssd 4744 . . . . . . . . 9 ((𝜑𝑓:(1...1)⟶𝑅) → {1} ⊆ (𝑓 “ {(𝑓‘1)}))
209, 19eqsstrid 4017 . . . . . . . 8 ((𝜑𝑓:(1...1)⟶𝑅) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
216, 20syldan 593 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅m (1...1))) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
2221ralrimiva 3184 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
23 fveq2 6672 . . . . . . . . 9 (𝐾 = 1 → (AP‘𝐾) = (AP‘1))
2423oveqd 7175 . . . . . . . 8 (𝐾 = 1 → (1(AP‘𝐾)1) = (1(AP‘1)1))
2524sseq1d 4000 . . . . . . 7 (𝐾 = 1 → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2625ralbidv 3199 . . . . . 6 (𝐾 = 1 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2722, 26syl5ibrcom 249 . . . . 5 (𝜑 → (𝐾 = 1 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
28 oveq1 7165 . . . . . . . . . . . 12 (𝑎 = 1 → (𝑎(AP‘𝐾)𝑑) = (1(AP‘𝐾)𝑑))
2928sseq1d 4000 . . . . . . . . . . 11 (𝑎 = 1 → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
30 oveq2 7166 . . . . . . . . . . . 12 (𝑑 = 1 → (1(AP‘𝐾)𝑑) = (1(AP‘𝐾)1))
3130sseq1d 4000 . . . . . . . . . . 11 (𝑑 = 1 → ((1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
3229, 31rspc2ev 3637 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ ∧ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
337, 7, 32mp3an12 1447 . . . . . . . . 9 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
34 fvex 6685 . . . . . . . . . 10 (𝑓‘1) ∈ V
35 sneq 4579 . . . . . . . . . . . . 13 (𝑐 = (𝑓‘1) → {𝑐} = {(𝑓‘1)})
3635imaeq2d 5931 . . . . . . . . . . . 12 (𝑐 = (𝑓‘1) → (𝑓 “ {𝑐}) = (𝑓 “ {(𝑓‘1)}))
3736sseq2d 4001 . . . . . . . . . . 11 (𝑐 = (𝑓‘1) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
38372rexbidv 3302 . . . . . . . . . 10 (𝑐 = (𝑓‘1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
3934, 38spcev 3609 . . . . . . . . 9 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
4033, 39syl 17 . . . . . . . 8 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
41 vdw.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
4241adantr 483 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝑅m (1...1))) → 𝐾 ∈ ℕ0)
433, 42, 6vdwmc 16316 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅m (1...1))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐})))
4440, 43syl5ibr 248 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅m (1...1))) → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → 𝐾 MonoAP 𝑓))
4544ralimdva 3179 . . . . . 6 (𝜑 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓))
46 oveq2 7166 . . . . . . . . . 10 (𝑛 = 1 → (1...𝑛) = (1...1))
4746oveq2d 7174 . . . . . . . . 9 (𝑛 = 1 → (𝑅m (1...𝑛)) = (𝑅m (1...1)))
4847raleqdv 3417 . . . . . . . 8 (𝑛 = 1 → (∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓))
4948rspcev 3625 . . . . . . 7 ((1 ∈ ℕ ∧ ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
507, 49mpan 688 . . . . . 6 (∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
5145, 50syl6 35 . . . . 5 (𝜑 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
5227, 51syld 47 . . . 4 (𝜑 → (𝐾 = 1 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
53 breq1 5071 . . . . . . . 8 (𝑥 = 2 → (𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓))
5453rexralbidv 3303 . . . . . . 7 (𝑥 = 2 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓))
5554ralbidv 3199 . . . . . 6 (𝑥 = 2 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓))
56 breq1 5071 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 MonoAP 𝑓𝑘 MonoAP 𝑓))
5756rexralbidv 3303 . . . . . . 7 (𝑥 = 𝑘 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓))
5857ralbidv 3199 . . . . . 6 (𝑥 = 𝑘 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓))
59 breq1 5071 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑥 MonoAP 𝑓 ↔ (𝑘 + 1) MonoAP 𝑓))
6059rexralbidv 3303 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
6160ralbidv 3199 . . . . . 6 (𝑥 = (𝑘 + 1) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
62 breq1 5071 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 MonoAP 𝑓𝐾 MonoAP 𝑓))
6362rexralbidv 3303 . . . . . . 7 (𝑥 = 𝐾 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓))
6463ralbidv 3199 . . . . . 6 (𝑥 = 𝐾 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓))
65 hashcl 13720 . . . . . . . . 9 (𝑟 ∈ Fin → (♯‘𝑟) ∈ ℕ0)
66 nn0p1nn 11939 . . . . . . . . 9 ((♯‘𝑟) ∈ ℕ0 → ((♯‘𝑟) + 1) ∈ ℕ)
6765, 66syl 17 . . . . . . . 8 (𝑟 ∈ Fin → ((♯‘𝑟) + 1) ∈ ℕ)
68 simpll 765 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑟 ∈ Fin)
69 simplr 767 . . . . . . . . . . . 12 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1))))
70 vex 3499 . . . . . . . . . . . . 13 𝑟 ∈ V
71 ovex 7191 . . . . . . . . . . . . 13 (1...((♯‘𝑟) + 1)) ∈ V
7270, 71elmap 8437 . . . . . . . . . . . 12 (𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1))) ↔ 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟)
7369, 72sylib 220 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟)
74 simpr 487 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → ¬ 2 MonoAP 𝑓)
7568, 73, 74vdwlem12 16330 . . . . . . . . . 10 ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓)
76 iman 404 . . . . . . . . . 10 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) → 2 MonoAP 𝑓) ↔ ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓))
7775, 76mpbir 233 . . . . . . . . 9 ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) → 2 MonoAP 𝑓)
7877ralrimiva 3184 . . . . . . . 8 (𝑟 ∈ Fin → ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓)
79 oveq2 7166 . . . . . . . . . . 11 (𝑛 = ((♯‘𝑟) + 1) → (1...𝑛) = (1...((♯‘𝑟) + 1)))
8079oveq2d 7174 . . . . . . . . . 10 (𝑛 = ((♯‘𝑟) + 1) → (𝑟m (1...𝑛)) = (𝑟m (1...((♯‘𝑟) + 1))))
8180raleqdv 3417 . . . . . . . . 9 (𝑛 = ((♯‘𝑟) + 1) → (∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓))
8281rspcev 3625 . . . . . . . 8 ((((♯‘𝑟) + 1) ∈ ℕ ∧ ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓)
8367, 78, 82syl2anc 586 . . . . . . 7 (𝑟 ∈ Fin → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓)
8483rgen 3150 . . . . . 6 𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓
85 oveq1 7165 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑟m (1...𝑛)) = (𝑠m (1...𝑛)))
8685raleqdv 3417 . . . . . . . . . 10 (𝑟 = 𝑠 → (∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓))
8786rexbidv 3299 . . . . . . . . 9 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓))
88 oveq2 7166 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
8988oveq2d 7174 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑠m (1...𝑛)) = (𝑠m (1...𝑚)))
9089raleqdv 3417 . . . . . . . . . . 11 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑓))
91 breq2 5072 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑘 MonoAP 𝑓𝑘 MonoAP 𝑔))
9291cbvralvw 3451 . . . . . . . . . . 11 (∀𝑓 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
9390, 92syl6bb 289 . . . . . . . . . 10 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔))
9493cbvrexvw 3452 . . . . . . . . 9 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
9587, 94syl6bb 289 . . . . . . . 8 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔))
9695cbvralvw 3451 . . . . . . 7 (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
97 simplr 767 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑟 ∈ Fin)
98 simpll 765 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑘 ∈ (ℤ‘2))
99 simpr 487 . . . . . . . . . . 11 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
10094ralbii 3167 . . . . . . . . . . 11 (∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
10199, 100sylibr 236 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓)
10297, 98, 101vdwlem11 16329 . . . . . . . . 9 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)
103102ex 415 . . . . . . . 8 ((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
104103ralrimdva 3191 . . . . . . 7 (𝑘 ∈ (ℤ‘2) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10596, 104syl5bi 244 . . . . . 6 (𝑘 ∈ (ℤ‘2) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10655, 58, 61, 64, 84, 105uzind4i 12313 . . . . 5 (𝐾 ∈ (ℤ‘2) → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓)
107 oveq1 7165 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟m (1...𝑛)) = (𝑅m (1...𝑛)))
108107raleqdv 3417 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
109108rexbidv 3299 . . . . . 6 (𝑟 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
110109rspcv 3620 . . . . 5 (𝑅 ∈ Fin → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
1112, 106, 110syl2im 40 . . . 4 (𝜑 → (𝐾 ∈ (ℤ‘2) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
11252, 111jaod 855 . . 3 (𝜑 → ((𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
1131, 112syl5bi 244 . 2 (𝜑 → (𝐾 ∈ ℕ → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
114 fveq2 6672 . . . . . . 7 (𝐾 = 0 → (AP‘𝐾) = (AP‘0))
115114oveqd 7175 . . . . . 6 (𝐾 = 0 → (1(AP‘𝐾)1) = (1(AP‘0)1))
116 vdwap0 16314 . . . . . . 7 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘0)1) = ∅)
1177, 7, 116mp2an 690 . . . . . 6 (1(AP‘0)1) = ∅
118115, 117syl6eq 2874 . . . . 5 (𝐾 = 0 → (1(AP‘𝐾)1) = ∅)
119 0ss 4352 . . . . 5 ∅ ⊆ (𝑓 “ {(𝑓‘1)})
120118, 119eqsstrdi 4023 . . . 4 (𝐾 = 0 → (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
121120ralrimivw 3185 . . 3 (𝐾 = 0 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
122121, 51syl5 34 . 2 (𝜑 → (𝐾 = 0 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
123 elnn0 11902 . . 3 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
12441, 123sylib 220 . 2 (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
125113, 122, 124mpjaod 856 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  wss 3938  c0 4293  {csn 4569   class class class wbr 5068  ccnv 5556  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Fincfn 8511  0cc0 10539  1c1 10540   + caddc 10542  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  chash 13693  APcvdwa 16303   MonoAP cvdwm 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-hash 13694  df-vdwap 16306  df-vdwmc 16307  df-vdwpc 16308
This theorem is referenced by:  vdw  16332
  Copyright terms: Public domain W3C validator