| Step | Hyp | Ref
| Expression |
| 1 | | elnn1uz2 12967 |
. . 3
⊢ (𝐾 ∈ ℕ ↔ (𝐾 = 1 ∨ 𝐾 ∈
(ℤ≥‘2))) |
| 2 | | vdw.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 3 | | ovex 7464 |
. . . . . . . . . 10
⊢ (1...1)
∈ V |
| 4 | | elmapg 8879 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Fin ∧ (1...1) ∈
V) → (𝑓 ∈ (𝑅 ↑m (1...1))
↔ 𝑓:(1...1)⟶𝑅)) |
| 5 | 2, 3, 4 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓 ∈ (𝑅 ↑m (1...1)) ↔ 𝑓:(1...1)⟶𝑅)) |
| 6 | 5 | biimpa 476 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) → 𝑓:(1...1)⟶𝑅) |
| 7 | | 1nn 12277 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
| 8 | | vdwap1 17015 |
. . . . . . . . . 10
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘1)1) =
{1}) |
| 9 | 7, 7, 8 | mp2an 692 |
. . . . . . . . 9
⊢
(1(AP‘1)1) = {1} |
| 10 | | 1z 12647 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
| 11 | | elfz3 13574 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → 1 ∈ (1...1)) |
| 12 | 10, 11 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 1 ∈ (1...1)) |
| 13 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (𝑓‘1) = (𝑓‘1)) |
| 14 | | ffn 6736 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...1)⟶𝑅 → 𝑓 Fn (1...1)) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 𝑓 Fn (1...1)) |
| 16 | | fniniseg 7080 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn (1...1) → (1 ∈
(◡𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧
(𝑓‘1) = (𝑓‘1)))) |
| 17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (1 ∈ (◡𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧
(𝑓‘1) = (𝑓‘1)))) |
| 18 | 12, 13, 17 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 1 ∈ (◡𝑓 “ {(𝑓‘1)})) |
| 19 | 18 | snssd 4809 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → {1} ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 20 | 9, 19 | eqsstrid 4022 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 21 | 6, 20 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) →
(1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 22 | 21 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑓 ∈ (𝑅 ↑m (1...1))(1(AP‘1)1)
⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 23 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝐾 = 1 → (AP‘𝐾) =
(AP‘1)) |
| 24 | 23 | oveqd 7448 |
. . . . . . . 8
⊢ (𝐾 = 1 → (1(AP‘𝐾)1) =
(1(AP‘1)1)) |
| 25 | 24 | sseq1d 4015 |
. . . . . . 7
⊢ (𝐾 = 1 → ((1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘1)1) ⊆
(◡𝑓 “ {(𝑓‘1)}))) |
| 26 | 25 | ralbidv 3178 |
. . . . . 6
⊢ (𝐾 = 1 → (∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ ∀𝑓 ∈ (𝑅 ↑m (1...1))(1(AP‘1)1)
⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 27 | 22, 26 | syl5ibrcom 247 |
. . . . 5
⊢ (𝜑 → (𝐾 = 1 → ∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 28 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑎 = 1 → (𝑎(AP‘𝐾)𝑑) = (1(AP‘𝐾)𝑑)) |
| 29 | 28 | sseq1d 4015 |
. . . . . . . . . . 11
⊢ (𝑎 = 1 → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 30 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑑 = 1 → (1(AP‘𝐾)𝑑) = (1(AP‘𝐾)1)) |
| 31 | 30 | sseq1d 4015 |
. . . . . . . . . . 11
⊢ (𝑑 = 1 → ((1(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 32 | 29, 31 | rspc2ev 3635 |
. . . . . . . . . 10
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ ∧ (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 33 | 7, 7, 32 | mp3an12 1453 |
. . . . . . . . 9
⊢
((1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 34 | | fvex 6919 |
. . . . . . . . . 10
⊢ (𝑓‘1) ∈
V |
| 35 | | sneq 4636 |
. . . . . . . . . . . . 13
⊢ (𝑐 = (𝑓‘1) → {𝑐} = {(𝑓‘1)}) |
| 36 | 35 | imaeq2d 6078 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑓‘1) → (◡𝑓 “ {𝑐}) = (◡𝑓 “ {(𝑓‘1)})) |
| 37 | 36 | sseq2d 4016 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑓‘1) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 38 | 37 | 2rexbidv 3222 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑓‘1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
| 39 | 34, 38 | spcev 3606 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
ℕ ∃𝑑 ∈
ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐})) |
| 40 | 33, 39 | syl 17 |
. . . . . . . 8
⊢
((1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐})) |
| 41 | | vdw.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 42 | 41 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) → 𝐾 ∈
ℕ0) |
| 43 | 3, 42, 6 | vdwmc 17016 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}))) |
| 44 | 40, 43 | imbitrrid 246 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) →
((1(AP‘𝐾)1) ⊆
(◡𝑓 “ {(𝑓‘1)}) → 𝐾 MonoAP 𝑓)) |
| 45 | 44 | ralimdva 3167 |
. . . . . 6
⊢ (𝜑 → (∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∀𝑓 ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓)) |
| 46 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
| 47 | 46 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m
(1...1))) |
| 48 | 47 | raleqdv 3326 |
. . . . . . . 8
⊢ (𝑛 = 1 → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓)) |
| 49 | 48 | rspcev 3622 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ ∀𝑓 ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 50 | 7, 49 | mpan 690 |
. . . . . 6
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...1))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 51 | 45, 50 | syl6 35 |
. . . . 5
⊢ (𝜑 → (∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 52 | 27, 51 | syld 47 |
. . . 4
⊢ (𝜑 → (𝐾 = 1 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 53 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 2 → (𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓)) |
| 54 | 53 | rexralbidv 3223 |
. . . . . . 7
⊢ (𝑥 = 2 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓)) |
| 55 | 54 | ralbidv 3178 |
. . . . . 6
⊢ (𝑥 = 2 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓)) |
| 56 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝑥 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑓)) |
| 57 | 56 | rexralbidv 3223 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
| 58 | 57 | ralbidv 3178 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
| 59 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝑥 MonoAP 𝑓 ↔ (𝑘 + 1) MonoAP 𝑓)) |
| 60 | 59 | rexralbidv 3223 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 61 | 60 | ralbidv 3178 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 62 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = 𝐾 → (𝑥 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑓)) |
| 63 | 62 | rexralbidv 3223 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 64 | 63 | ralbidv 3178 |
. . . . . 6
⊢ (𝑥 = 𝐾 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 65 | | hashcl 14395 |
. . . . . . . . 9
⊢ (𝑟 ∈ Fin →
(♯‘𝑟) ∈
ℕ0) |
| 66 | | nn0p1nn 12565 |
. . . . . . . . 9
⊢
((♯‘𝑟)
∈ ℕ0 → ((♯‘𝑟) + 1) ∈ ℕ) |
| 67 | 65, 66 | syl 17 |
. . . . . . . 8
⊢ (𝑟 ∈ Fin →
((♯‘𝑟) + 1)
∈ ℕ) |
| 68 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑟 ∈ Fin) |
| 69 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) |
| 70 | | vex 3484 |
. . . . . . . . . . . . 13
⊢ 𝑟 ∈ V |
| 71 | | ovex 7464 |
. . . . . . . . . . . . 13
⊢
(1...((♯‘𝑟) + 1)) ∈ V |
| 72 | 70, 71 | elmap 8911 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1))) ↔ 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟) |
| 73 | 69, 72 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟) |
| 74 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → ¬ 2 MonoAP 𝑓) |
| 75 | 68, 73, 74 | vdwlem12 17030 |
. . . . . . . . . 10
⊢ ¬
((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) |
| 76 | | iman 401 |
. . . . . . . . . 10
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) → 2 MonoAP 𝑓)
↔ ¬ ((𝑟 ∈ Fin
∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓)) |
| 77 | 75, 76 | mpbir 231 |
. . . . . . . . 9
⊢ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) → 2 MonoAP 𝑓) |
| 78 | 77 | ralrimiva 3146 |
. . . . . . . 8
⊢ (𝑟 ∈ Fin → ∀𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))2 MonoAP 𝑓) |
| 79 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑛 = ((♯‘𝑟) + 1) → (1...𝑛) = (1...((♯‘𝑟) + 1))) |
| 80 | 79 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑛 = ((♯‘𝑟) + 1) → (𝑟 ↑m (1...𝑛)) = (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) |
| 81 | 80 | raleqdv 3326 |
. . . . . . . . 9
⊢ (𝑛 = ((♯‘𝑟) + 1) → (∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))2 MonoAP 𝑓)) |
| 82 | 81 | rspcev 3622 |
. . . . . . . 8
⊢
((((♯‘𝑟)
+ 1) ∈ ℕ ∧ ∀𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))2 MonoAP 𝑓) →
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓) |
| 83 | 67, 78, 82 | syl2anc 584 |
. . . . . . 7
⊢ (𝑟 ∈ Fin → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓) |
| 84 | 83 | rgen 3063 |
. . . . . 6
⊢
∀𝑟 ∈ Fin
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓 |
| 85 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → (𝑟 ↑m (1...𝑛)) = (𝑠 ↑m (1...𝑛))) |
| 86 | 85 | raleqdv 3326 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → (∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
| 87 | 86 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
| 88 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚)) |
| 89 | 88 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝑠 ↑m (1...𝑛)) = (𝑠 ↑m (1...𝑚))) |
| 90 | 89 | raleqdv 3326 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑓)) |
| 91 | | breq2 5147 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑘 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑔)) |
| 92 | 91 | cbvralvw 3237 |
. . . . . . . . . . 11
⊢
(∀𝑓 ∈
(𝑠 ↑m
(1...𝑚))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
| 93 | 90, 92 | bitrdi 287 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔)) |
| 94 | 93 | cbvrexvw 3238 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑠 ↑m
(1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
| 95 | 87, 94 | bitrdi 287 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔)) |
| 96 | 95 | cbvralvw 3237 |
. . . . . . 7
⊢
(∀𝑟 ∈
Fin ∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
| 97 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑟 ∈ Fin) |
| 98 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑘 ∈
(ℤ≥‘2)) |
| 99 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
| 100 | 94 | ralbii 3093 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
Fin ∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
| 101 | 99, 100 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓) |
| 102 | 97, 98, 101 | vdwlem11 17029 |
. . . . . . . . 9
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓) |
| 103 | 102 | ex 412 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 104 | 103 | ralrimdva 3154 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘2) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 105 | 96, 104 | biimtrid 242 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘2) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
| 106 | 55, 58, 61, 64, 84, 105 | uzind4i 12952 |
. . . . 5
⊢ (𝐾 ∈
(ℤ≥‘2) → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
| 107 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑟 ↑m (1...𝑛)) = (𝑅 ↑m (1...𝑛))) |
| 108 | 107 | raleqdv 3326 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 109 | 108 | rexbidv 3179 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 110 | 109 | rspcv 3618 |
. . . . 5
⊢ (𝑅 ∈ Fin →
(∀𝑟 ∈ Fin
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 111 | 2, 106, 110 | syl2im 40 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘2)
→ ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))𝐾 MonoAP 𝑓)) |
| 112 | 52, 111 | jaod 860 |
. . 3
⊢ (𝜑 → ((𝐾 = 1 ∨ 𝐾 ∈ (ℤ≥‘2))
→ ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))𝐾 MonoAP 𝑓)) |
| 113 | 1, 112 | biimtrid 242 |
. 2
⊢ (𝜑 → (𝐾 ∈ ℕ → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 114 | | fveq2 6906 |
. . . . . . 7
⊢ (𝐾 = 0 → (AP‘𝐾) =
(AP‘0)) |
| 115 | 114 | oveqd 7448 |
. . . . . 6
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) =
(1(AP‘0)1)) |
| 116 | | vdwap0 17014 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘0)1) =
∅) |
| 117 | 7, 7, 116 | mp2an 692 |
. . . . . 6
⊢
(1(AP‘0)1) = ∅ |
| 118 | 115, 117 | eqtrdi 2793 |
. . . . 5
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) = ∅) |
| 119 | | 0ss 4400 |
. . . . 5
⊢ ∅
⊆ (◡𝑓 “ {(𝑓‘1)}) |
| 120 | 118, 119 | eqsstrdi 4028 |
. . . 4
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 121 | 120 | ralrimivw 3150 |
. . 3
⊢ (𝐾 = 0 → ∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)})) |
| 122 | 121, 51 | syl5 34 |
. 2
⊢ (𝜑 → (𝐾 = 0 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
| 123 | | elnn0 12528 |
. . 3
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
| 124 | 41, 123 | sylib 218 |
. 2
⊢ (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
| 125 | 113, 122,
124 | mpjaod 861 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |