Step | Hyp | Ref
| Expression |
1 | | elnn1uz2 12379 |
. . 3
⊢ (𝐾 ∈ ℕ ↔ (𝐾 = 1 ∨ 𝐾 ∈
(ℤ≥‘2))) |
2 | | vdw.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Fin) |
3 | | ovex 7190 |
. . . . . . . . . 10
⊢ (1...1)
∈ V |
4 | | elmapg 8436 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Fin ∧ (1...1) ∈
V) → (𝑓 ∈ (𝑅 ↑m (1...1))
↔ 𝑓:(1...1)⟶𝑅)) |
5 | 2, 3, 4 | sylancl 589 |
. . . . . . . . 9
⊢ (𝜑 → (𝑓 ∈ (𝑅 ↑m (1...1)) ↔ 𝑓:(1...1)⟶𝑅)) |
6 | 5 | biimpa 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) → 𝑓:(1...1)⟶𝑅) |
7 | | 1nn 11699 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ |
8 | | vdwap1 16383 |
. . . . . . . . . 10
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘1)1) =
{1}) |
9 | 7, 7, 8 | mp2an 691 |
. . . . . . . . 9
⊢
(1(AP‘1)1) = {1} |
10 | | 1z 12065 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
11 | | elfz3 12980 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → 1 ∈ (1...1)) |
12 | 10, 11 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 1 ∈ (1...1)) |
13 | | eqidd 2760 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (𝑓‘1) = (𝑓‘1)) |
14 | | ffn 6504 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...1)⟶𝑅 → 𝑓 Fn (1...1)) |
15 | 14 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 𝑓 Fn (1...1)) |
16 | | fniniseg 6827 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn (1...1) → (1 ∈
(◡𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧
(𝑓‘1) = (𝑓‘1)))) |
17 | 15, 16 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (1 ∈ (◡𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧
(𝑓‘1) = (𝑓‘1)))) |
18 | 12, 13, 17 | mpbir2and 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → 1 ∈ (◡𝑓 “ {(𝑓‘1)})) |
19 | 18 | snssd 4703 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → {1} ⊆ (◡𝑓 “ {(𝑓‘1)})) |
20 | 9, 19 | eqsstrid 3943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓:(1...1)⟶𝑅) → (1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
21 | 6, 20 | syldan 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) →
(1(AP‘1)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
22 | 21 | ralrimiva 3114 |
. . . . . 6
⊢ (𝜑 → ∀𝑓 ∈ (𝑅 ↑m (1...1))(1(AP‘1)1)
⊆ (◡𝑓 “ {(𝑓‘1)})) |
23 | | fveq2 6664 |
. . . . . . . . 9
⊢ (𝐾 = 1 → (AP‘𝐾) =
(AP‘1)) |
24 | 23 | oveqd 7174 |
. . . . . . . 8
⊢ (𝐾 = 1 → (1(AP‘𝐾)1) =
(1(AP‘1)1)) |
25 | 24 | sseq1d 3926 |
. . . . . . 7
⊢ (𝐾 = 1 → ((1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘1)1) ⊆
(◡𝑓 “ {(𝑓‘1)}))) |
26 | 25 | ralbidv 3127 |
. . . . . 6
⊢ (𝐾 = 1 → (∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ ∀𝑓 ∈ (𝑅 ↑m (1...1))(1(AP‘1)1)
⊆ (◡𝑓 “ {(𝑓‘1)}))) |
27 | 22, 26 | syl5ibrcom 250 |
. . . . 5
⊢ (𝜑 → (𝐾 = 1 → ∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}))) |
28 | | oveq1 7164 |
. . . . . . . . . . . 12
⊢ (𝑎 = 1 → (𝑎(AP‘𝐾)𝑑) = (1(AP‘𝐾)𝑑)) |
29 | 28 | sseq1d 3926 |
. . . . . . . . . . 11
⊢ (𝑎 = 1 → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
30 | | oveq2 7165 |
. . . . . . . . . . . 12
⊢ (𝑑 = 1 → (1(AP‘𝐾)𝑑) = (1(AP‘𝐾)1)) |
31 | 30 | sseq1d 3926 |
. . . . . . . . . . 11
⊢ (𝑑 = 1 → ((1(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
32 | 29, 31 | rspc2ev 3556 |
. . . . . . . . . 10
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ ∧ (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
33 | 7, 7, 32 | mp3an12 1449 |
. . . . . . . . 9
⊢
((1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
34 | | fvex 6677 |
. . . . . . . . . 10
⊢ (𝑓‘1) ∈
V |
35 | | sneq 4536 |
. . . . . . . . . . . . 13
⊢ (𝑐 = (𝑓‘1) → {𝑐} = {(𝑓‘1)}) |
36 | 35 | imaeq2d 5907 |
. . . . . . . . . . . 12
⊢ (𝑐 = (𝑓‘1) → (◡𝑓 “ {𝑐}) = (◡𝑓 “ {(𝑓‘1)})) |
37 | 36 | sseq2d 3927 |
. . . . . . . . . . 11
⊢ (𝑐 = (𝑓‘1) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
38 | 37 | 2rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑐 = (𝑓‘1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}))) |
39 | 34, 38 | spcev 3528 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
ℕ ∃𝑑 ∈
ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐})) |
40 | 33, 39 | syl 17 |
. . . . . . . 8
⊢
((1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐})) |
41 | | vdw.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
42 | 41 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) → 𝐾 ∈
ℕ0) |
43 | 3, 42, 6 | vdwmc 16384 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝑓 “ {𝑐}))) |
44 | 40, 43 | syl5ibr 249 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (𝑅 ↑m (1...1))) →
((1(AP‘𝐾)1) ⊆
(◡𝑓 “ {(𝑓‘1)}) → 𝐾 MonoAP 𝑓)) |
45 | 44 | ralimdva 3109 |
. . . . . 6
⊢ (𝜑 → (∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∀𝑓 ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓)) |
46 | | oveq2 7165 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (1...𝑛) = (1...1)) |
47 | 46 | oveq2d 7173 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (𝑅 ↑m (1...𝑛)) = (𝑅 ↑m
(1...1))) |
48 | 47 | raleqdv 3330 |
. . . . . . . 8
⊢ (𝑛 = 1 → (∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓)) |
49 | 48 | rspcev 3544 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ ∀𝑓 ∈ (𝑅 ↑m (1...1))𝐾 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
50 | 7, 49 | mpan 689 |
. . . . . 6
⊢
(∀𝑓 ∈
(𝑅 ↑m
(1...1))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
51 | 45, 50 | syl6 35 |
. . . . 5
⊢ (𝜑 → (∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)}) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
52 | 27, 51 | syld 47 |
. . . 4
⊢ (𝜑 → (𝐾 = 1 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
53 | | breq1 5040 |
. . . . . . . 8
⊢ (𝑥 = 2 → (𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓)) |
54 | 53 | rexralbidv 3226 |
. . . . . . 7
⊢ (𝑥 = 2 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓)) |
55 | 54 | ralbidv 3127 |
. . . . . 6
⊢ (𝑥 = 2 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓)) |
56 | | breq1 5040 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝑥 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑓)) |
57 | 56 | rexralbidv 3226 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
58 | 57 | ralbidv 3127 |
. . . . . 6
⊢ (𝑥 = 𝑘 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
59 | | breq1 5040 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝑥 MonoAP 𝑓 ↔ (𝑘 + 1) MonoAP 𝑓)) |
60 | 59 | rexralbidv 3226 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
61 | 60 | ralbidv 3127 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
62 | | breq1 5040 |
. . . . . . . 8
⊢ (𝑥 = 𝐾 → (𝑥 MonoAP 𝑓 ↔ 𝐾 MonoAP 𝑓)) |
63 | 62 | rexralbidv 3226 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
64 | 63 | ralbidv 3127 |
. . . . . 6
⊢ (𝑥 = 𝐾 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
65 | | hashcl 13781 |
. . . . . . . . 9
⊢ (𝑟 ∈ Fin →
(♯‘𝑟) ∈
ℕ0) |
66 | | nn0p1nn 11987 |
. . . . . . . . 9
⊢
((♯‘𝑟)
∈ ℕ0 → ((♯‘𝑟) + 1) ∈ ℕ) |
67 | 65, 66 | syl 17 |
. . . . . . . 8
⊢ (𝑟 ∈ Fin →
((♯‘𝑟) + 1)
∈ ℕ) |
68 | | simpll 766 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑟 ∈ Fin) |
69 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) |
70 | | vex 3414 |
. . . . . . . . . . . . 13
⊢ 𝑟 ∈ V |
71 | | ovex 7190 |
. . . . . . . . . . . . 13
⊢
(1...((♯‘𝑟) + 1)) ∈ V |
72 | 70, 71 | elmap 8467 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1))) ↔ 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟) |
73 | 69, 72 | sylib 221 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟) |
74 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) → ¬ 2 MonoAP 𝑓) |
75 | 68, 73, 74 | vdwlem12 16398 |
. . . . . . . . . 10
⊢ ¬
((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓) |
76 | | iman 405 |
. . . . . . . . . 10
⊢ (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) → 2 MonoAP 𝑓)
↔ ¬ ((𝑟 ∈ Fin
∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) ∧ ¬ 2 MonoAP 𝑓)) |
77 | 75, 76 | mpbir 234 |
. . . . . . . . 9
⊢ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) → 2 MonoAP 𝑓) |
78 | 77 | ralrimiva 3114 |
. . . . . . . 8
⊢ (𝑟 ∈ Fin → ∀𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))2 MonoAP 𝑓) |
79 | | oveq2 7165 |
. . . . . . . . . . 11
⊢ (𝑛 = ((♯‘𝑟) + 1) → (1...𝑛) = (1...((♯‘𝑟) + 1))) |
80 | 79 | oveq2d 7173 |
. . . . . . . . . 10
⊢ (𝑛 = ((♯‘𝑟) + 1) → (𝑟 ↑m (1...𝑛)) = (𝑟 ↑m
(1...((♯‘𝑟) +
1)))) |
81 | 80 | raleqdv 3330 |
. . . . . . . . 9
⊢ (𝑛 = ((♯‘𝑟) + 1) → (∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))2 MonoAP 𝑓)) |
82 | 81 | rspcev 3544 |
. . . . . . . 8
⊢
((((♯‘𝑟)
+ 1) ∈ ℕ ∧ ∀𝑓 ∈ (𝑟 ↑m
(1...((♯‘𝑟) +
1)))2 MonoAP 𝑓) →
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓) |
83 | 67, 78, 82 | syl2anc 587 |
. . . . . . 7
⊢ (𝑟 ∈ Fin → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓) |
84 | 83 | rgen 3081 |
. . . . . 6
⊢
∀𝑟 ∈ Fin
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))2 MonoAP 𝑓 |
85 | | oveq1 7164 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → (𝑟 ↑m (1...𝑛)) = (𝑠 ↑m (1...𝑛))) |
86 | 85 | raleqdv 3330 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → (∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
87 | 86 | rexbidv 3222 |
. . . . . . . . 9
⊢ (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓)) |
88 | | oveq2 7165 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚)) |
89 | 88 | oveq2d 7173 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑚 → (𝑠 ↑m (1...𝑛)) = (𝑠 ↑m (1...𝑚))) |
90 | 89 | raleqdv 3330 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑓)) |
91 | | breq2 5041 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑘 MonoAP 𝑓 ↔ 𝑘 MonoAP 𝑔)) |
92 | 91 | cbvralvw 3362 |
. . . . . . . . . . 11
⊢
(∀𝑓 ∈
(𝑠 ↑m
(1...𝑚))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
93 | 90, 92 | bitrdi 290 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔)) |
94 | 93 | cbvrexvw 3363 |
. . . . . . . . 9
⊢
(∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑠 ↑m
(1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
95 | 87, 94 | bitrdi 290 |
. . . . . . . 8
⊢ (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔)) |
96 | 95 | cbvralvw 3362 |
. . . . . . 7
⊢
(∀𝑟 ∈
Fin ∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
97 | | simplr 768 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑟 ∈ Fin) |
98 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑘 ∈
(ℤ≥‘2)) |
99 | | simpr 488 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
100 | 94 | ralbii 3098 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
Fin ∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) |
101 | 99, 100 | sylibr 237 |
. . . . . . . . . 10
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠 ↑m (1...𝑛))𝑘 MonoAP 𝑓) |
102 | 97, 98, 101 | vdwlem11 16397 |
. . . . . . . . 9
⊢ (((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓) |
103 | 102 | ex 416 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘2) ∧ 𝑟 ∈ Fin) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
104 | 103 | ralrimdva 3119 |
. . . . . . 7
⊢ (𝑘 ∈
(ℤ≥‘2) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠 ↑m (1...𝑚))𝑘 MonoAP 𝑔 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
105 | 96, 104 | syl5bi 245 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘2) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝑘 MonoAP 𝑓 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)) |
106 | 55, 58, 61, 64, 84, 105 | uzind4i 12364 |
. . . . 5
⊢ (𝐾 ∈
(ℤ≥‘2) → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |
107 | | oveq1 7164 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑟 ↑m (1...𝑛)) = (𝑅 ↑m (1...𝑛))) |
108 | 107 | raleqdv 3330 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → (∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
109 | 108 | rexbidv 3222 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
110 | 109 | rspcv 3539 |
. . . . 5
⊢ (𝑅 ∈ Fin →
(∀𝑟 ∈ Fin
∃𝑛 ∈ ℕ
∀𝑓 ∈ (𝑟 ↑m (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
111 | 2, 106, 110 | syl2im 40 |
. . . 4
⊢ (𝜑 → (𝐾 ∈ (ℤ≥‘2)
→ ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))𝐾 MonoAP 𝑓)) |
112 | 52, 111 | jaod 856 |
. . 3
⊢ (𝜑 → ((𝐾 = 1 ∨ 𝐾 ∈ (ℤ≥‘2))
→ ∃𝑛 ∈
ℕ ∀𝑓 ∈
(𝑅 ↑m
(1...𝑛))𝐾 MonoAP 𝑓)) |
113 | 1, 112 | syl5bi 245 |
. 2
⊢ (𝜑 → (𝐾 ∈ ℕ → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
114 | | fveq2 6664 |
. . . . . . 7
⊢ (𝐾 = 0 → (AP‘𝐾) =
(AP‘0)) |
115 | 114 | oveqd 7174 |
. . . . . 6
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) =
(1(AP‘0)1)) |
116 | | vdwap0 16382 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘0)1) =
∅) |
117 | 7, 7, 116 | mp2an 691 |
. . . . . 6
⊢
(1(AP‘0)1) = ∅ |
118 | 115, 117 | eqtrdi 2810 |
. . . . 5
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) = ∅) |
119 | | 0ss 4296 |
. . . . 5
⊢ ∅
⊆ (◡𝑓 “ {(𝑓‘1)}) |
120 | 118, 119 | eqsstrdi 3949 |
. . . 4
⊢ (𝐾 = 0 → (1(AP‘𝐾)1) ⊆ (◡𝑓 “ {(𝑓‘1)})) |
121 | 120 | ralrimivw 3115 |
. . 3
⊢ (𝐾 = 0 → ∀𝑓 ∈ (𝑅 ↑m
(1...1))(1(AP‘𝐾)1)
⊆ (◡𝑓 “ {(𝑓‘1)})) |
122 | 121, 51 | syl5 34 |
. 2
⊢ (𝜑 → (𝐾 = 0 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓)) |
123 | | elnn0 11950 |
. . 3
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℕ
∨ 𝐾 =
0)) |
124 | 41, 123 | sylib 221 |
. 2
⊢ (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0)) |
125 | 113, 122,
124 | mpjaod 857 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅 ↑m (1...𝑛))𝐾 MonoAP 𝑓) |