MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem13 Structured version   Visualization version   GIF version

Theorem vdwlem13 16694
Description: Lemma for vdw 16695. Main induction on 𝐾; 𝐾 = 0, 𝐾 = 1 base cases. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r (𝜑𝑅 ∈ Fin)
vdw.k (𝜑𝐾 ∈ ℕ0)
Assertion
Ref Expression
vdwlem13 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
Distinct variable groups:   𝜑,𝑛,𝑓   𝑓,𝐾,𝑛   𝑅,𝑓,𝑛   𝜑,𝑓

Proof of Theorem vdwlem13
Dummy variables 𝑎 𝑐 𝑑 𝑔 𝑘 𝑚 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn1uz2 12665 . . 3 (𝐾 ∈ ℕ ↔ (𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)))
2 vdw.r . . . . . . . . . 10 (𝜑𝑅 ∈ Fin)
3 ovex 7308 . . . . . . . . . 10 (1...1) ∈ V
4 elmapg 8628 . . . . . . . . . 10 ((𝑅 ∈ Fin ∧ (1...1) ∈ V) → (𝑓 ∈ (𝑅m (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
52, 3, 4sylancl 586 . . . . . . . . 9 (𝜑 → (𝑓 ∈ (𝑅m (1...1)) ↔ 𝑓:(1...1)⟶𝑅))
65biimpa 477 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅m (1...1))) → 𝑓:(1...1)⟶𝑅)
7 1nn 11984 . . . . . . . . . 10 1 ∈ ℕ
8 vdwap1 16678 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘1)1) = {1})
97, 7, 8mp2an 689 . . . . . . . . 9 (1(AP‘1)1) = {1}
10 1z 12350 . . . . . . . . . . . 12 1 ∈ ℤ
11 elfz3 13266 . . . . . . . . . . . 12 (1 ∈ ℤ → 1 ∈ (1...1))
1210, 11mp1i 13 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (1...1))
13 eqidd 2739 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (𝑓‘1) = (𝑓‘1))
14 ffn 6600 . . . . . . . . . . . . 13 (𝑓:(1...1)⟶𝑅𝑓 Fn (1...1))
1514adantl 482 . . . . . . . . . . . 12 ((𝜑𝑓:(1...1)⟶𝑅) → 𝑓 Fn (1...1))
16 fniniseg 6937 . . . . . . . . . . . 12 (𝑓 Fn (1...1) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1715, 16syl 17 . . . . . . . . . . 11 ((𝜑𝑓:(1...1)⟶𝑅) → (1 ∈ (𝑓 “ {(𝑓‘1)}) ↔ (1 ∈ (1...1) ∧ (𝑓‘1) = (𝑓‘1))))
1812, 13, 17mpbir2and 710 . . . . . . . . . 10 ((𝜑𝑓:(1...1)⟶𝑅) → 1 ∈ (𝑓 “ {(𝑓‘1)}))
1918snssd 4742 . . . . . . . . 9 ((𝜑𝑓:(1...1)⟶𝑅) → {1} ⊆ (𝑓 “ {(𝑓‘1)}))
209, 19eqsstrid 3969 . . . . . . . 8 ((𝜑𝑓:(1...1)⟶𝑅) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
216, 20syldan 591 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅m (1...1))) → (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
2221ralrimiva 3103 . . . . . 6 (𝜑 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)}))
23 fveq2 6774 . . . . . . . . 9 (𝐾 = 1 → (AP‘𝐾) = (AP‘1))
2423oveqd 7292 . . . . . . . 8 (𝐾 = 1 → (1(AP‘𝐾)1) = (1(AP‘1)1))
2524sseq1d 3952 . . . . . . 7 (𝐾 = 1 → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2625ralbidv 3112 . . . . . 6 (𝐾 = 1 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘1)1) ⊆ (𝑓 “ {(𝑓‘1)})))
2722, 26syl5ibrcom 246 . . . . 5 (𝜑 → (𝐾 = 1 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
28 oveq1 7282 . . . . . . . . . . . 12 (𝑎 = 1 → (𝑎(AP‘𝐾)𝑑) = (1(AP‘𝐾)𝑑))
2928sseq1d 3952 . . . . . . . . . . 11 (𝑎 = 1 → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
30 oveq2 7283 . . . . . . . . . . . 12 (𝑑 = 1 → (1(AP‘𝐾)𝑑) = (1(AP‘𝐾)1))
3130sseq1d 3952 . . . . . . . . . . 11 (𝑑 = 1 → ((1(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) ↔ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})))
3229, 31rspc2ev 3572 . . . . . . . . . 10 ((1 ∈ ℕ ∧ 1 ∈ ℕ ∧ (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
337, 7, 32mp3an12 1450 . . . . . . . . 9 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}))
34 fvex 6787 . . . . . . . . . 10 (𝑓‘1) ∈ V
35 sneq 4571 . . . . . . . . . . . . 13 (𝑐 = (𝑓‘1) → {𝑐} = {(𝑓‘1)})
3635imaeq2d 5969 . . . . . . . . . . . 12 (𝑐 = (𝑓‘1) → (𝑓 “ {𝑐}) = (𝑓 “ {(𝑓‘1)}))
3736sseq2d 3953 . . . . . . . . . . 11 (𝑐 = (𝑓‘1) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
38372rexbidv 3229 . . . . . . . . . 10 (𝑐 = (𝑓‘1) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)})))
3934, 38spcev 3545 . . . . . . . . 9 (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
4033, 39syl 17 . . . . . . . 8 ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐}))
41 vdw.k . . . . . . . . . 10 (𝜑𝐾 ∈ ℕ0)
4241adantr 481 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝑅m (1...1))) → 𝐾 ∈ ℕ0)
433, 42, 6vdwmc 16679 . . . . . . . 8 ((𝜑𝑓 ∈ (𝑅m (1...1))) → (𝐾 MonoAP 𝑓 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝑓 “ {𝑐})))
4440, 43syl5ibr 245 . . . . . . 7 ((𝜑𝑓 ∈ (𝑅m (1...1))) → ((1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → 𝐾 MonoAP 𝑓))
4544ralimdva 3108 . . . . . 6 (𝜑 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓))
46 oveq2 7283 . . . . . . . . . 10 (𝑛 = 1 → (1...𝑛) = (1...1))
4746oveq2d 7291 . . . . . . . . 9 (𝑛 = 1 → (𝑅m (1...𝑛)) = (𝑅m (1...1)))
4847raleqdv 3348 . . . . . . . 8 (𝑛 = 1 → (∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓))
4948rspcev 3561 . . . . . . 7 ((1 ∈ ℕ ∧ ∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
507, 49mpan 687 . . . . . 6 (∀𝑓 ∈ (𝑅m (1...1))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
5145, 50syl6 35 . . . . 5 (𝜑 → (∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
5227, 51syld 47 . . . 4 (𝜑 → (𝐾 = 1 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
53 breq1 5077 . . . . . . . 8 (𝑥 = 2 → (𝑥 MonoAP 𝑓 ↔ 2 MonoAP 𝑓))
5453rexralbidv 3230 . . . . . . 7 (𝑥 = 2 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓))
5554ralbidv 3112 . . . . . 6 (𝑥 = 2 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓))
56 breq1 5077 . . . . . . . 8 (𝑥 = 𝑘 → (𝑥 MonoAP 𝑓𝑘 MonoAP 𝑓))
5756rexralbidv 3230 . . . . . . 7 (𝑥 = 𝑘 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓))
5857ralbidv 3112 . . . . . 6 (𝑥 = 𝑘 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓))
59 breq1 5077 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑥 MonoAP 𝑓 ↔ (𝑘 + 1) MonoAP 𝑓))
6059rexralbidv 3230 . . . . . . 7 (𝑥 = (𝑘 + 1) → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
6160ralbidv 3112 . . . . . 6 (𝑥 = (𝑘 + 1) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
62 breq1 5077 . . . . . . . 8 (𝑥 = 𝐾 → (𝑥 MonoAP 𝑓𝐾 MonoAP 𝑓))
6362rexralbidv 3230 . . . . . . 7 (𝑥 = 𝐾 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓))
6463ralbidv 3112 . . . . . 6 (𝑥 = 𝐾 → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑥 MonoAP 𝑓 ↔ ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓))
65 hashcl 14071 . . . . . . . . 9 (𝑟 ∈ Fin → (♯‘𝑟) ∈ ℕ0)
66 nn0p1nn 12272 . . . . . . . . 9 ((♯‘𝑟) ∈ ℕ0 → ((♯‘𝑟) + 1) ∈ ℕ)
6765, 66syl 17 . . . . . . . 8 (𝑟 ∈ Fin → ((♯‘𝑟) + 1) ∈ ℕ)
68 simpll 764 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑟 ∈ Fin)
69 simplr 766 . . . . . . . . . . . 12 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1))))
70 vex 3436 . . . . . . . . . . . . 13 𝑟 ∈ V
71 ovex 7308 . . . . . . . . . . . . 13 (1...((♯‘𝑟) + 1)) ∈ V
7270, 71elmap 8659 . . . . . . . . . . . 12 (𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1))) ↔ 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟)
7369, 72sylib 217 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → 𝑓:(1...((♯‘𝑟) + 1))⟶𝑟)
74 simpr 485 . . . . . . . . . . 11 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓) → ¬ 2 MonoAP 𝑓)
7568, 73, 74vdwlem12 16693 . . . . . . . . . 10 ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓)
76 iman 402 . . . . . . . . . 10 (((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) → 2 MonoAP 𝑓) ↔ ¬ ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) ∧ ¬ 2 MonoAP 𝑓))
7775, 76mpbir 230 . . . . . . . . 9 ((𝑟 ∈ Fin ∧ 𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))) → 2 MonoAP 𝑓)
7877ralrimiva 3103 . . . . . . . 8 (𝑟 ∈ Fin → ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓)
79 oveq2 7283 . . . . . . . . . . 11 (𝑛 = ((♯‘𝑟) + 1) → (1...𝑛) = (1...((♯‘𝑟) + 1)))
8079oveq2d 7291 . . . . . . . . . 10 (𝑛 = ((♯‘𝑟) + 1) → (𝑟m (1...𝑛)) = (𝑟m (1...((♯‘𝑟) + 1))))
8180raleqdv 3348 . . . . . . . . 9 (𝑛 = ((♯‘𝑟) + 1) → (∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓))
8281rspcev 3561 . . . . . . . 8 ((((♯‘𝑟) + 1) ∈ ℕ ∧ ∀𝑓 ∈ (𝑟m (1...((♯‘𝑟) + 1)))2 MonoAP 𝑓) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓)
8367, 78, 82syl2anc 584 . . . . . . 7 (𝑟 ∈ Fin → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓)
8483rgen 3074 . . . . . 6 𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))2 MonoAP 𝑓
85 oveq1 7282 . . . . . . . . . . 11 (𝑟 = 𝑠 → (𝑟m (1...𝑛)) = (𝑠m (1...𝑛)))
8685raleqdv 3348 . . . . . . . . . 10 (𝑟 = 𝑠 → (∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓))
8786rexbidv 3226 . . . . . . . . 9 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓))
88 oveq2 7283 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (1...𝑛) = (1...𝑚))
8988oveq2d 7291 . . . . . . . . . . . 12 (𝑛 = 𝑚 → (𝑠m (1...𝑛)) = (𝑠m (1...𝑚)))
9089raleqdv 3348 . . . . . . . . . . 11 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑓))
91 breq2 5078 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑘 MonoAP 𝑓𝑘 MonoAP 𝑔))
9291cbvralvw 3383 . . . . . . . . . . 11 (∀𝑓 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
9390, 92bitrdi 287 . . . . . . . . . 10 (𝑛 = 𝑚 → (∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔))
9493cbvrexvw 3384 . . . . . . . . 9 (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
9587, 94bitrdi 287 . . . . . . . 8 (𝑟 = 𝑠 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔))
9695cbvralvw 3383 . . . . . . 7 (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
97 simplr 766 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑟 ∈ Fin)
98 simpll 764 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → 𝑘 ∈ (ℤ‘2))
99 simpr 485 . . . . . . . . . . 11 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
10094ralbii 3092 . . . . . . . . . . 11 (∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓 ↔ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔)
10199, 100sylibr 233 . . . . . . . . . 10 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∀𝑠 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑠m (1...𝑛))𝑘 MonoAP 𝑓)
10297, 98, 101vdwlem11 16692 . . . . . . . . 9 (((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) ∧ ∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓)
103102ex 413 . . . . . . . 8 ((𝑘 ∈ (ℤ‘2) ∧ 𝑟 ∈ Fin) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
104103ralrimdva 3106 . . . . . . 7 (𝑘 ∈ (ℤ‘2) → (∀𝑠 ∈ Fin ∃𝑚 ∈ ℕ ∀𝑔 ∈ (𝑠m (1...𝑚))𝑘 MonoAP 𝑔 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10596, 104syl5bi 241 . . . . . 6 (𝑘 ∈ (ℤ‘2) → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝑘 MonoAP 𝑓 → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))(𝑘 + 1) MonoAP 𝑓))
10655, 58, 61, 64, 84, 105uzind4i 12650 . . . . 5 (𝐾 ∈ (ℤ‘2) → ∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓)
107 oveq1 7282 . . . . . . . 8 (𝑟 = 𝑅 → (𝑟m (1...𝑛)) = (𝑅m (1...𝑛)))
108107raleqdv 3348 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
109108rexbidv 3226 . . . . . 6 (𝑟 = 𝑅 → (∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 ↔ ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
110109rspcv 3557 . . . . 5 (𝑅 ∈ Fin → (∀𝑟 ∈ Fin ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑟m (1...𝑛))𝐾 MonoAP 𝑓 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
1112, 106, 110syl2im 40 . . . 4 (𝜑 → (𝐾 ∈ (ℤ‘2) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
11252, 111jaod 856 . . 3 (𝜑 → ((𝐾 = 1 ∨ 𝐾 ∈ (ℤ‘2)) → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
1131, 112syl5bi 241 . 2 (𝜑 → (𝐾 ∈ ℕ → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
114 fveq2 6774 . . . . . . 7 (𝐾 = 0 → (AP‘𝐾) = (AP‘0))
115114oveqd 7292 . . . . . 6 (𝐾 = 0 → (1(AP‘𝐾)1) = (1(AP‘0)1))
116 vdwap0 16677 . . . . . . 7 ((1 ∈ ℕ ∧ 1 ∈ ℕ) → (1(AP‘0)1) = ∅)
1177, 7, 116mp2an 689 . . . . . 6 (1(AP‘0)1) = ∅
118115, 117eqtrdi 2794 . . . . 5 (𝐾 = 0 → (1(AP‘𝐾)1) = ∅)
119 0ss 4330 . . . . 5 ∅ ⊆ (𝑓 “ {(𝑓‘1)})
120118, 119eqsstrdi 3975 . . . 4 (𝐾 = 0 → (1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
121120ralrimivw 3104 . . 3 (𝐾 = 0 → ∀𝑓 ∈ (𝑅m (1...1))(1(AP‘𝐾)1) ⊆ (𝑓 “ {(𝑓‘1)}))
122121, 51syl5 34 . 2 (𝜑 → (𝐾 = 0 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓))
123 elnn0 12235 . . 3 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
12441, 123sylib 217 . 2 (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
125113, 122, 124mpjaod 857 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑓 ∈ (𝑅m (1...𝑛))𝐾 MonoAP 𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  ccnv 5588  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  chash 14044  APcvdwa 16666   MonoAP cvdwm 16667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-hash 14045  df-vdwap 16669  df-vdwmc 16670  df-vdwpc 16671
This theorem is referenced by:  vdw  16695
  Copyright terms: Public domain W3C validator