![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inf3lemc | Structured version Visualization version GIF version |
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9704 for detailed description. (Contributed by NM, 28-Oct-1996.) |
Ref | Expression |
---|---|
inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
inf3lem.3 | ⊢ 𝐴 ∈ V |
inf3lem.4 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
inf3lemc | ⊢ (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsuc 8493 | . 2 ⊢ (𝐴 ∈ ω → ((rec(𝐺, ∅) ↾ ω)‘suc 𝐴) = (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝐴))) | |
2 | inf3lem.2 | . . 3 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
3 | 2 | fveq1i 6921 | . 2 ⊢ (𝐹‘suc 𝐴) = ((rec(𝐺, ∅) ↾ ω)‘suc 𝐴) |
4 | 2 | fveq1i 6921 | . . 3 ⊢ (𝐹‘𝐴) = ((rec(𝐺, ∅) ↾ ω)‘𝐴) |
5 | 4 | fveq2i 6923 | . 2 ⊢ (𝐺‘(𝐹‘𝐴)) = (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝐴)) |
6 | 1, 3, 5 | 3eqtr4g 2805 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ↦ cmpt 5249 ↾ cres 5702 suc csuc 6397 ‘cfv 6573 ωcom 7903 reccrdg 8465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 |
This theorem is referenced by: inf3lemd 9696 inf3lem1 9697 inf3lem2 9698 inf3lem3 9699 |
Copyright terms: Public domain | W3C validator |