MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lemc Structured version   Visualization version   GIF version

Theorem inf3lemc 9620
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9629 for detailed description. (Contributed by NM, 28-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lemc (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lemc
StepHypRef Expression
1 frsuc 8435 . 2 (𝐴 ∈ ω → ((rec(𝐺, ∅) ↾ ω)‘suc 𝐴) = (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝐴)))
2 inf3lem.2 . . 3 𝐹 = (rec(𝐺, ∅) ↾ ω)
32fveq1i 6885 . 2 (𝐹‘suc 𝐴) = ((rec(𝐺, ∅) ↾ ω)‘suc 𝐴)
42fveq1i 6885 . . 3 (𝐹𝐴) = ((rec(𝐺, ∅) ↾ ω)‘𝐴)
54fveq2i 6887 . 2 (𝐺‘(𝐹𝐴)) = (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝐴))
61, 3, 53eqtr4g 2791 1 (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  cin 3942  wss 3943  c0 4317  cmpt 5224  cres 5671  suc csuc 6359  cfv 6536  ωcom 7851  reccrdg 8407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408
This theorem is referenced by:  inf3lemd  9621  inf3lem1  9622  inf3lem2  9623  inf3lem3  9624
  Copyright terms: Public domain W3C validator