| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inf3lemc | Structured version Visualization version GIF version | ||
| Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9649 for detailed description. (Contributed by NM, 28-Oct-1996.) |
| Ref | Expression |
|---|---|
| inf3lem.1 | ⊢ 𝐺 = (𝑦 ∈ V ↦ {𝑤 ∈ 𝑥 ∣ (𝑤 ∩ 𝑥) ⊆ 𝑦}) |
| inf3lem.2 | ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) |
| inf3lem.3 | ⊢ 𝐴 ∈ V |
| inf3lem.4 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| inf3lemc | ⊢ (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frsuc 8451 | . 2 ⊢ (𝐴 ∈ ω → ((rec(𝐺, ∅) ↾ ω)‘suc 𝐴) = (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝐴))) | |
| 2 | inf3lem.2 | . . 3 ⊢ 𝐹 = (rec(𝐺, ∅) ↾ ω) | |
| 3 | 2 | fveq1i 6877 | . 2 ⊢ (𝐹‘suc 𝐴) = ((rec(𝐺, ∅) ↾ ω)‘suc 𝐴) |
| 4 | 2 | fveq1i 6877 | . . 3 ⊢ (𝐹‘𝐴) = ((rec(𝐺, ∅) ↾ ω)‘𝐴) |
| 5 | 4 | fveq2i 6879 | . 2 ⊢ (𝐺‘(𝐹‘𝐴)) = (𝐺‘((rec(𝐺, ∅) ↾ ω)‘𝐴)) |
| 6 | 1, 3, 5 | 3eqtr4g 2795 | 1 ⊢ (𝐴 ∈ ω → (𝐹‘suc 𝐴) = (𝐺‘(𝐹‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 ↦ cmpt 5201 ↾ cres 5656 suc csuc 6354 ‘cfv 6531 ωcom 7861 reccrdg 8423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 |
| This theorem is referenced by: inf3lemd 9641 inf3lem1 9642 inf3lem2 9643 inf3lem3 9644 |
| Copyright terms: Public domain | W3C validator |