MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infsdomnn Structured version   Visualization version   GIF version

Theorem infsdomnn 8511
Description: An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
infsdomnn ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)

Proof of Theorem infsdomnn
StepHypRef Expression
1 reldom 8249 . . . 4 Rel ≼
21brrelex1i 5408 . . 3 (ω ≼ 𝐴 → ω ∈ V)
3 nnsdomg 8509 . . 3 ((ω ∈ V ∧ 𝐵 ∈ ω) → 𝐵 ≺ ω)
42, 3sylan 575 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵 ≺ ω)
5 simpl 476 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → ω ≼ 𝐴)
6 sdomdomtr 8383 . 2 ((𝐵 ≺ ω ∧ ω ≼ 𝐴) → 𝐵𝐴)
74, 5, 6syl2anc 579 1 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  Vcvv 3398   class class class wbr 4888  ωcom 7345  cdom 8241  csdm 8242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-om 7346  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247
This theorem is referenced by:  infn0  8512
  Copyright terms: Public domain W3C validator