MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infsdomnn Structured version   Visualization version   GIF version

Theorem infsdomnn 9185
Description: An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5301. (Revised by BTernaryTau, 7-Jan-2025.)
Assertion
Ref Expression
infsdomnn ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)

Proof of Theorem infsdomnn
StepHypRef Expression
1 nnfi 9077 . . 3 (𝐵 ∈ ω → 𝐵 ∈ Fin)
21adantl 481 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵 ∈ Fin)
3 reldom 8875 . . . 4 Rel ≼
43brrelex1i 5670 . . 3 (ω ≼ 𝐴 → ω ∈ V)
5 nnsdomg 9183 . . 3 ((ω ∈ V ∧ 𝐵 ∈ ω) → 𝐵 ≺ ω)
64, 5sylan 580 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵 ≺ ω)
7 simpl 482 . 2 ((ω ≼ 𝐴𝐵 ∈ ω) → ω ≼ 𝐴)
8 sdomdomtrfi 9110 . 2 ((𝐵 ∈ Fin ∧ 𝐵 ≺ ω ∧ ω ≼ 𝐴) → 𝐵𝐴)
92, 6, 7, 8syl3anc 1373 1 ((ω ≼ 𝐴𝐵 ∈ ω) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436   class class class wbr 5089  ωcom 7796  cdom 8867  csdm 8868  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by:  infn0ALT  9187
  Copyright terms: Public domain W3C validator