| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltle | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrltle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | xrleloe 13160 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | imbitrrid 246 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ℝ*cxr 11268 < clt 11269 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: xrltled 13166 xrletri 13169 xrletr 13174 qextltlem 13218 xmulge0 13300 supxrunb1 13335 ico0 13408 ioc0 13409 ioossicc 13450 icossicc 13453 iocssicc 13454 ioossico 13455 snunioo 13495 snunico 13496 ioopnfsup 13881 icopnfsup 13882 hashnnn0genn0 14361 leordtval2 23150 lecldbas 23157 blcls 24445 stdbdxmet 24454 stdbdmopn 24457 metcnpi3 24485 xrsmopn 24752 metnrmlem1a 24798 bndth 24908 ovolgelb 25433 icombl 25517 ioorf 25526 ioorinv2 25528 itg2seq 25695 tanord1 26498 dvloglem 26609 iocinif 32758 esumpinfsum 34108 omssubadd 34332 elicc3 36335 tan2h 37636 heicant 37679 itg2addnclem 37695 radcnvrat 44338 ioossioc 45521 ioossioobi 45546 fouriersw 46260 iccpartnel 47452 i0oii 48894 io1ii 48895 |
| Copyright terms: Public domain | W3C validator |