MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltle Structured version   Visualization version   GIF version

Theorem xrltle 13069
Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))

Proof of Theorem xrltle
StepHypRef Expression
1 orc 866 . 2 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵))
2 xrleloe 13064 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
31, 2syl5ibr 246 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107   class class class wbr 5106  *cxr 11189   < clt 11190  cle 11191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-pre-lttri 11126  ax-pre-lttrn 11127
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196
This theorem is referenced by:  xrltled  13070  xrletri  13073  xrletr  13078  qextltlem  13122  xmulge0  13204  supxrunb1  13239  ico0  13311  ioc0  13312  ioossicc  13351  icossicc  13354  iocssicc  13355  ioossico  13356  snunioo  13396  snunico  13397  ioopnfsup  13770  icopnfsup  13771  hashnnn0genn0  14244  leordtval2  22566  lecldbas  22573  blcls  23865  stdbdxmet  23874  stdbdmopn  23877  metcnpi3  23905  xrsmopn  24178  metnrmlem1a  24224  bndth  24324  ovolgelb  24847  icombl  24931  ioorf  24940  ioorinv2  24942  itg2seq  25110  tanord1  25896  dvloglem  26006  iocinif  31687  esumpinfsum  32679  omssubadd  32903  elicc3  34792  tan2h  36073  heicant  36116  itg2addnclem  36132  radcnvrat  42601  ioossioc  43737  ioossioobi  43762  fouriersw  44479  iccpartnel  45637  i0oii  46959  io1ii  46960
  Copyright terms: Public domain W3C validator