| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrltle | Structured version Visualization version GIF version | ||
| Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrltle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 868 | . 2 ⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | xrleloe 13186 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | imbitrrid 246 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 |
| This theorem is referenced by: xrltled 13192 xrletri 13195 xrletr 13200 qextltlem 13244 xmulge0 13326 supxrunb1 13361 ico0 13433 ioc0 13434 ioossicc 13473 icossicc 13476 iocssicc 13477 ioossico 13478 snunioo 13518 snunico 13519 ioopnfsup 13904 icopnfsup 13905 hashnnn0genn0 14382 leordtval2 23220 lecldbas 23227 blcls 24519 stdbdxmet 24528 stdbdmopn 24531 metcnpi3 24559 xrsmopn 24834 metnrmlem1a 24880 bndth 24990 ovolgelb 25515 icombl 25599 ioorf 25608 ioorinv2 25610 itg2seq 25777 tanord1 26579 dvloglem 26690 iocinif 32783 esumpinfsum 34078 omssubadd 34302 elicc3 36318 tan2h 37619 heicant 37662 itg2addnclem 37678 radcnvrat 44333 ioossioc 45505 ioossioobi 45530 fouriersw 46246 iccpartnel 47425 i0oii 48817 io1ii 48818 |
| Copyright terms: Public domain | W3C validator |