MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltle Structured version   Visualization version   GIF version

Theorem xrltle 12229
Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))

Proof of Theorem xrltle
StepHypRef Expression
1 orc 894 . 2 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵))
2 xrleloe 12224 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
31, 2syl5ibr 238 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874   = wceq 1653  wcel 2157   class class class wbr 4843  *cxr 10362   < clt 10363  cle 10364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-pre-lttri 10298  ax-pre-lttrn 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369
This theorem is referenced by:  xrltled  12230  xrletri  12233  xrletr  12238  qextltlem  12282  xmulge0  12363  supxrunb1  12398  ico0  12470  ioc0  12471  ioossicc  12508  icossicc  12510  iocssicc  12511  ioossico  12512  ioounsnOLD  12551  snunioo  12552  snunico  12553  ioopnfsup  12918  icopnfsup  12919  hashnnn0genn0  13383  leordtval2  21345  lecldbas  21352  blcls  22639  stdbdxmet  22648  stdbdmopn  22651  metcnpi3  22679  xrsmopn  22943  metnrmlem1a  22989  bndth  23085  ovolgelb  23588  icombl  23672  ioorf  23681  ioorinv2  23683  itg2seq  23850  tanord1  24625  dvloglem  24735  iocinif  30061  esumpinfsum  30655  omssubadd  30878  elicc3  32824  tan2h  33890  heicant  33933  itg2addnclem  33949  radcnvrat  39295  ioossioc  40461  ioossioobi  40488  fouriersw  41191  iccpartnel  42214
  Copyright terms: Public domain W3C validator