MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltle Structured version   Visualization version   GIF version

Theorem xrltle 13165
Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltle ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))

Proof of Theorem xrltle
StepHypRef Expression
1 orc 867 . 2 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐴 = 𝐵))
2 xrleloe 13160 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
31, 2imbitrrid 246 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119  *cxr 11268   < clt 11269  cle 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275
This theorem is referenced by:  xrltled  13166  xrletri  13169  xrletr  13174  qextltlem  13218  xmulge0  13300  supxrunb1  13335  ico0  13408  ioc0  13409  ioossicc  13450  icossicc  13453  iocssicc  13454  ioossico  13455  snunioo  13495  snunico  13496  ioopnfsup  13881  icopnfsup  13882  hashnnn0genn0  14361  leordtval2  23150  lecldbas  23157  blcls  24445  stdbdxmet  24454  stdbdmopn  24457  metcnpi3  24485  xrsmopn  24752  metnrmlem1a  24798  bndth  24908  ovolgelb  25433  icombl  25517  ioorf  25526  ioorinv2  25528  itg2seq  25695  tanord1  26498  dvloglem  26609  iocinif  32758  esumpinfsum  34108  omssubadd  34332  elicc3  36335  tan2h  37636  heicant  37679  itg2addnclem  37695  radcnvrat  44338  ioossioc  45521  ioossioobi  45546  fouriersw  46260  iccpartnel  47452  i0oii  48894  io1ii  48895
  Copyright terms: Public domain W3C validator