Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrltle | Structured version Visualization version GIF version |
Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
xrltle | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 866 | . 2 ⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | |
2 | xrleloe 12620 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 1, 2 | syl5ibr 249 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 ℝ*cxr 10752 < clt 10753 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-pre-lttri 10689 ax-pre-lttrn 10690 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 |
This theorem is referenced by: xrltled 12626 xrletri 12629 xrletr 12634 qextltlem 12678 xmulge0 12760 supxrunb1 12795 ico0 12867 ioc0 12868 ioossicc 12907 icossicc 12910 iocssicc 12911 ioossico 12912 snunioo 12952 snunico 12953 ioopnfsup 13323 icopnfsup 13324 hashnnn0genn0 13795 leordtval2 21963 lecldbas 21970 blcls 23259 stdbdxmet 23268 stdbdmopn 23271 metcnpi3 23299 xrsmopn 23564 metnrmlem1a 23610 bndth 23710 ovolgelb 24232 icombl 24316 ioorf 24325 ioorinv2 24327 itg2seq 24495 tanord1 25281 dvloglem 25391 iocinif 30677 esumpinfsum 31615 omssubadd 31837 elicc3 34144 tan2h 35392 heicant 35435 itg2addnclem 35451 radcnvrat 41470 ioossioc 42570 ioossioobi 42595 fouriersw 43314 iccpartnel 44424 i0oii 45735 io1ii 45736 |
Copyright terms: Public domain | W3C validator |