MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudoml Structured version   Visualization version   GIF version

Theorem djudoml 9763
Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djudoml ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))

Proof of Theorem djudoml
StepHypRef Expression
1 unexg 7512 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
2 ssun1 4072 . . 3 𝐴 ⊆ (𝐴𝐵)
3 ssdomg 8652 . . 3 ((𝐴𝐵) ∈ V → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
41, 2, 3mpisyl 21 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
5 undjudom 9746 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))
6 domtr 8659 . 2 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → 𝐴 ≼ (𝐴𝐵))
74, 5, 6syl2anc 587 1 ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  Vcvv 3398  cun 3851  wss 3853   class class class wbr 5039  cdom 8602  cdju 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-1st 7739  df-2nd 7740  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-dju 9482
This theorem is referenced by:  djuinf  9767  infdju1  9768  infdjuabs  9785  isfin4p1  9894  isfin5-2  9970  gchdomtri  10208  gchdju1  10235  pwxpndom  10245  gchdjuidm  10247  gchpwdom  10249  gchhar  10258
  Copyright terms: Public domain W3C validator