Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djudoml | Structured version Visualization version GIF version |
Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
djudoml | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unexg 7599 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | |
2 | ssun1 4106 | . . 3 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
3 | ssdomg 8786 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ∈ V → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) | |
4 | 1, 2, 3 | mpisyl 21 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
5 | undjudom 9923 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | |
6 | domtr 8793 | . 2 ⊢ ((𝐴 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | |
7 | 4, 5, 6 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 class class class wbr 5074 ≼ cdom 8731 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-dju 9659 |
This theorem is referenced by: djuinf 9944 infdju1 9945 infdjuabs 9962 isfin4p1 10071 isfin5-2 10147 gchdomtri 10385 gchdju1 10412 pwxpndom 10422 gchdjuidm 10424 gchpwdom 10426 gchhar 10435 |
Copyright terms: Public domain | W3C validator |