MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djudoml Structured version   Visualization version   GIF version

Theorem djudoml 10098
Description: A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djudoml ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))

Proof of Theorem djudoml
StepHypRef Expression
1 unexg 7683 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
2 ssun1 4131 . . 3 𝐴 ⊆ (𝐴𝐵)
3 ssdomg 8932 . . 3 ((𝐴𝐵) ∈ V → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
41, 2, 3mpisyl 21 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
5 undjudom 10081 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ≼ (𝐴𝐵))
6 domtr 8939 . 2 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → 𝐴 ≼ (𝐴𝐵))
74, 5, 6syl2anc 584 1 ((𝐴𝑉𝐵𝑊) → 𝐴 ≼ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3438  cun 3903  wss 3905   class class class wbr 5095  cdom 8877  cdju 9813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1st 7931  df-2nd 7932  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-dju 9816
This theorem is referenced by:  djuinf  10102  infdju1  10103  infdjuabs  10118  isfin4p1  10228  isfin5-2  10304  gchdomtri  10542  gchdju1  10569  pwxpndom  10579  gchdjuidm  10581  gchpwdom  10583  gchhar  10592
  Copyright terms: Public domain W3C validator