MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen2 Structured version   Visualization version   GIF version

Theorem iskgen2 22607
Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
iskgen2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))

Proof of Theorem iskgen2
StepHypRef Expression
1 kgentop 22601 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
2 kgenidm 22606 . . . 4 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
3 eqimss 3973 . . . 4 ((𝑘Gen‘𝐽) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽)
42, 3syl 17 . . 3 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽)
51, 4jca 511 . 2 (𝐽 ∈ ran 𝑘Gen → (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
6 simpr 484 . . . 4 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ⊆ 𝐽)
7 kgenss 22602 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
87adantr 480 . . . 4 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ⊆ (𝑘Gen‘𝐽))
96, 8eqssd 3934 . . 3 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) = 𝐽)
10 kgenf 22600 . . . . . 6 𝑘Gen:Top⟶Top
11 ffn 6584 . . . . . 6 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
1210, 11ax-mp 5 . . . . 5 𝑘Gen Fn Top
13 fnfvelrn 6940 . . . . 5 ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
1412, 13mpan 686 . . . 4 (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
1514adantr 480 . . 3 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
169, 15eqeltrrd 2840 . 2 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ∈ ran 𝑘Gen)
175, 16impbii 208 1 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883  ran crn 5581   Fn wfn 6413  wf 6414  cfv 6418  Topctop 21950  𝑘Genckgen 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-kgen 22593
This theorem is referenced by:  iskgen3  22608  llycmpkgen2  22609  1stckgen  22613  txkgen  22711  qtopkgen  22769
  Copyright terms: Public domain W3C validator