| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iskgen2 | Structured version Visualization version GIF version | ||
| Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| iskgen2 | ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgentop 23485 | . . 3 ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) | |
| 2 | kgenidm 23490 | . . . 4 ⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽) | |
| 3 | eqimss 4022 | . . . 4 ⊢ ((𝑘Gen‘𝐽) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽) |
| 5 | 1, 4 | jca 511 | . 2 ⊢ (𝐽 ∈ ran 𝑘Gen → (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ⊆ 𝐽) | |
| 7 | kgenss 23486 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| 9 | 6, 8 | eqssd 3981 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) = 𝐽) |
| 10 | kgenf 23484 | . . . . . 6 ⊢ 𝑘Gen:Top⟶Top | |
| 11 | ffn 6711 | . . . . . 6 ⊢ (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 𝑘Gen Fn Top |
| 13 | fnfvelrn 7075 | . . . . 5 ⊢ ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) | |
| 14 | 12, 13 | mpan 690 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
| 16 | 9, 15 | eqeltrrd 2836 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ∈ ran 𝑘Gen) |
| 17 | 5, 16 | impbii 209 | 1 ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ran crn 5660 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 Topctop 22836 𝑘Genckgen 23476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-en 8965 df-fin 8968 df-fi 9428 df-rest 17441 df-topgen 17462 df-top 22837 df-topon 22854 df-bases 22889 df-cmp 23330 df-kgen 23477 |
| This theorem is referenced by: iskgen3 23492 llycmpkgen2 23493 1stckgen 23497 txkgen 23595 qtopkgen 23653 |
| Copyright terms: Public domain | W3C validator |