Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen2 Structured version   Visualization version   GIF version

Theorem iskgen2 21876
 Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
iskgen2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))

Proof of Theorem iskgen2
StepHypRef Expression
1 kgentop 21870 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
2 kgenidm 21875 . . . 4 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽)
3 eqimss 3908 . . . 4 ((𝑘Gen‘𝐽) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽)
42, 3syl 17 . . 3 (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽)
51, 4jca 504 . 2 (𝐽 ∈ ran 𝑘Gen → (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
6 simpr 477 . . . 4 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ⊆ 𝐽)
7 kgenss 21871 . . . . 5 (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽))
87adantr 473 . . . 4 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ⊆ (𝑘Gen‘𝐽))
96, 8eqssd 3870 . . 3 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) = 𝐽)
10 kgenf 21869 . . . . . 6 𝑘Gen:Top⟶Top
11 ffn 6342 . . . . . 6 (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top)
1210, 11ax-mp 5 . . . . 5 𝑘Gen Fn Top
13 fnfvelrn 6672 . . . . 5 ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
1412, 13mpan 678 . . . 4 (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
1514adantr 473 . . 3 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen)
169, 15eqeltrrd 2862 . 2 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ∈ ran 𝑘Gen)
175, 16impbii 201 1 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   ∧ wa 387   = wceq 1508   ∈ wcel 2051   ⊆ wss 3824  ran crn 5405   Fn wfn 6181  ⟶wf 6182  ‘cfv 6186  Topctop 21221  𝑘Genckgen 21861 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278 This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-oadd 7908  df-er 8088  df-en 8306  df-fin 8309  df-fi 8669  df-rest 16551  df-topgen 16572  df-top 21222  df-topon 21239  df-bases 21274  df-cmp 21715  df-kgen 21862 This theorem is referenced by:  iskgen3  21877  llycmpkgen2  21878  1stckgen  21882  txkgen  21980  qtopkgen  22038
 Copyright terms: Public domain W3C validator