![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iskgen2 | Structured version Visualization version GIF version |
Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
iskgen2 | β’ (π½ β ran πGen β (π½ β Top β§ (πGenβπ½) β π½)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgentop 23266 | . . 3 β’ (π½ β ran πGen β π½ β Top) | |
2 | kgenidm 23271 | . . . 4 β’ (π½ β ran πGen β (πGenβπ½) = π½) | |
3 | eqimss 4040 | . . . 4 β’ ((πGenβπ½) = π½ β (πGenβπ½) β π½) | |
4 | 2, 3 | syl 17 | . . 3 β’ (π½ β ran πGen β (πGenβπ½) β π½) |
5 | 1, 4 | jca 512 | . 2 β’ (π½ β ran πGen β (π½ β Top β§ (πGenβπ½) β π½)) |
6 | simpr 485 | . . . 4 β’ ((π½ β Top β§ (πGenβπ½) β π½) β (πGenβπ½) β π½) | |
7 | kgenss 23267 | . . . . 5 β’ (π½ β Top β π½ β (πGenβπ½)) | |
8 | 7 | adantr 481 | . . . 4 β’ ((π½ β Top β§ (πGenβπ½) β π½) β π½ β (πGenβπ½)) |
9 | 6, 8 | eqssd 3999 | . . 3 β’ ((π½ β Top β§ (πGenβπ½) β π½) β (πGenβπ½) = π½) |
10 | kgenf 23265 | . . . . . 6 β’ πGen:TopβΆTop | |
11 | ffn 6717 | . . . . . 6 β’ (πGen:TopβΆTop β πGen Fn Top) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 β’ πGen Fn Top |
13 | fnfvelrn 7082 | . . . . 5 β’ ((πGen Fn Top β§ π½ β Top) β (πGenβπ½) β ran πGen) | |
14 | 12, 13 | mpan 688 | . . . 4 β’ (π½ β Top β (πGenβπ½) β ran πGen) |
15 | 14 | adantr 481 | . . 3 β’ ((π½ β Top β§ (πGenβπ½) β π½) β (πGenβπ½) β ran πGen) |
16 | 9, 15 | eqeltrrd 2834 | . 2 β’ ((π½ β Top β§ (πGenβπ½) β π½) β π½ β ran πGen) |
17 | 5, 16 | impbii 208 | 1 β’ (π½ β ran πGen β (π½ β Top β§ (πGenβπ½) β π½)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 ran crn 5677 Fn wfn 6538 βΆwf 6539 βcfv 6543 Topctop 22615 πGenckgen 23257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-en 8942 df-fin 8945 df-fi 9408 df-rest 17372 df-topgen 17393 df-top 22616 df-topon 22633 df-bases 22669 df-cmp 23111 df-kgen 23258 |
This theorem is referenced by: iskgen3 23273 llycmpkgen2 23274 1stckgen 23278 txkgen 23376 qtopkgen 23434 |
Copyright terms: Public domain | W3C validator |