| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iskgen2 | Structured version Visualization version GIF version | ||
| Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| iskgen2 | ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgentop 23436 | . . 3 ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) | |
| 2 | kgenidm 23441 | . . . 4 ⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽) | |
| 3 | eqimss 4008 | . . . 4 ⊢ ((𝑘Gen‘𝐽) = 𝐽 → (𝑘Gen‘𝐽) ⊆ 𝐽) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) ⊆ 𝐽) |
| 5 | 1, 4 | jca 511 | . 2 ⊢ (𝐽 ∈ ran 𝑘Gen → (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ⊆ 𝐽) | |
| 7 | kgenss 23437 | . . . . 5 ⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ⊆ (𝑘Gen‘𝐽)) |
| 9 | 6, 8 | eqssd 3967 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) = 𝐽) |
| 10 | kgenf 23435 | . . . . . 6 ⊢ 𝑘Gen:Top⟶Top | |
| 11 | ffn 6691 | . . . . . 6 ⊢ (𝑘Gen:Top⟶Top → 𝑘Gen Fn Top) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ 𝑘Gen Fn Top |
| 13 | fnfvelrn 7055 | . . . . 5 ⊢ ((𝑘Gen Fn Top ∧ 𝐽 ∈ Top) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) | |
| 14 | 12, 13 | mpan 690 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → (𝑘Gen‘𝐽) ∈ ran 𝑘Gen) |
| 16 | 9, 15 | eqeltrrd 2830 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) → 𝐽 ∈ ran 𝑘Gen) |
| 17 | 5, 16 | impbii 209 | 1 ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ran crn 5642 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 Topctop 22787 𝑘Genckgen 23427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-en 8922 df-fin 8925 df-fi 9369 df-rest 17392 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cmp 23281 df-kgen 23428 |
| This theorem is referenced by: iskgen3 23443 llycmpkgen2 23444 1stckgen 23448 txkgen 23546 qtopkgen 23604 |
| Copyright terms: Public domain | W3C validator |