Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kgentop | Structured version Visualization version GIF version |
Description: A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
kgentop | ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgenf 22241 | . . 3 ⊢ 𝑘Gen:Top⟶Top | |
2 | frn 6504 | . . 3 ⊢ (𝑘Gen:Top⟶Top → ran 𝑘Gen ⊆ Top) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran 𝑘Gen ⊆ Top |
4 | 3 | sseli 3888 | 1 ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3858 ran crn 5525 ⟶wf 6331 Topctop 21593 𝑘Genckgen 22233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-en 8528 df-fin 8531 df-fi 8908 df-rest 16754 df-topgen 16775 df-top 21594 df-topon 21611 df-bases 21646 df-cmp 22087 df-kgen 22234 |
This theorem is referenced by: kgenidm 22247 iskgen2 22248 kgencn3 22258 txkgen 22352 qtopkgen 22410 |
Copyright terms: Public domain | W3C validator |