MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgentop Structured version   Visualization version   GIF version

Theorem kgentop 22601
Description: A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgentop (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)

Proof of Theorem kgentop
StepHypRef Expression
1 kgenf 22600 . . 3 𝑘Gen:Top⟶Top
2 frn 6591 . . 3 (𝑘Gen:Top⟶Top → ran 𝑘Gen ⊆ Top)
31, 2ax-mp 5 . 2 ran 𝑘Gen ⊆ Top
43sseli 3913 1 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883  ran crn 5581  wf 6414  Topctop 21950  𝑘Genckgen 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-kgen 22593
This theorem is referenced by:  kgenidm  22606  iskgen2  22607  kgencn3  22617  txkgen  22711  qtopkgen  22769
  Copyright terms: Public domain W3C validator