MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgentop Structured version   Visualization version   GIF version

Theorem kgentop 21567
Description: A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
kgentop (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)

Proof of Theorem kgentop
StepHypRef Expression
1 kgenf 21566 . . 3 𝑘Gen:Top⟶Top
2 frn 6194 . . 3 (𝑘Gen:Top⟶Top → ran 𝑘Gen ⊆ Top)
31, 2ax-mp 5 . 2 ran 𝑘Gen ⊆ Top
43sseli 3749 1 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2145  wss 3724  ran crn 5251  wf 6028  Topctop 20919  𝑘Genckgen 21558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-oadd 7718  df-er 7897  df-en 8111  df-fin 8114  df-fi 8474  df-rest 16292  df-topgen 16313  df-top 20920  df-topon 20937  df-bases 20972  df-cmp 21412  df-kgen 21559
This theorem is referenced by:  kgenidm  21572  iskgen2  21573  kgencn3  21583  txkgen  21677  qtopkgen  21735
  Copyright terms: Public domain W3C validator