| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kgentop | Structured version Visualization version GIF version | ||
| Description: A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| kgentop | ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kgenf 23434 | . . 3 ⊢ 𝑘Gen:Top⟶Top | |
| 2 | frn 6702 | . . 3 ⊢ (𝑘Gen:Top⟶Top → ran 𝑘Gen ⊆ Top) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran 𝑘Gen ⊆ Top |
| 4 | 3 | sseli 3950 | 1 ⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3922 ran crn 5647 ⟶wf 6515 Topctop 22786 𝑘Genckgen 23426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-en 8923 df-fin 8926 df-fi 9380 df-rest 17391 df-topgen 17412 df-top 22787 df-topon 22804 df-bases 22839 df-cmp 23280 df-kgen 23427 |
| This theorem is referenced by: kgenidm 23440 iskgen2 23441 kgencn3 23451 txkgen 23545 qtopkgen 23603 |
| Copyright terms: Public domain | W3C validator |