Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnriaN | Structured version Visualization version GIF version |
Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
islpln2a.l | ⊢ ≤ = (le‘𝐾) |
islpln2a.j | ⊢ ∨ = (join‘𝐾) |
islpln2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islpln2a.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
islpln2a.y | ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) |
Ref | Expression |
---|---|
lplnriaN | ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑄 ≤ (𝑅 ∨ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln2a.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | islpln2a.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | islpln2a.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | islpln2a.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | islpln2a.y | . . . 4 ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) | |
6 | 1, 2, 3, 4, 5 | islpln2ah 37571 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑌 ∈ 𝑃 ↔ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)))) |
7 | 1, 2, 3 | hlatcon3 37473 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅))) → ¬ 𝑄 ≤ (𝑅 ∨ 𝑆)) |
8 | 7 | 3expia 1120 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑄 ≠ 𝑅 ∧ ¬ 𝑆 ≤ (𝑄 ∨ 𝑅)) → ¬ 𝑄 ≤ (𝑅 ∨ 𝑆))) |
9 | 6, 8 | sylbid 239 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → (𝑌 ∈ 𝑃 → ¬ 𝑄 ≤ (𝑅 ∨ 𝑆))) |
10 | 9 | 3impia 1116 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑄 ≤ (𝑅 ∨ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 lecple 16979 joincjn 18039 Atomscatm 37285 HLchlt 37372 LPlanesclpl 37514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-proset 18023 df-poset 18041 df-plt 18058 df-lub 18074 df-glb 18075 df-join 18076 df-meet 18077 df-p0 18153 df-lat 18160 df-clat 18227 df-oposet 37198 df-ol 37200 df-oml 37201 df-covers 37288 df-ats 37289 df-atl 37320 df-cvlat 37344 df-hlat 37373 df-llines 37520 df-lplanes 37521 |
This theorem is referenced by: lplnri2N 37576 lplnllnneN 37578 |
Copyright terms: Public domain | W3C validator |