|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnllnneN | Structured version Visualization version GIF version | ||
| Description: Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| lplnri1.j | ⊢ ∨ = (join‘𝐾) | 
| lplnri1.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| lplnri1.p | ⊢ 𝑃 = (LPlanes‘𝐾) | 
| lplnri1.y | ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) | 
| Ref | Expression | 
|---|---|
| lplnllnneN | ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | lplnri1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | lplnri1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | lplnri1.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 5 | lplnri1.y | . . 3 ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) | |
| 6 | 1, 2, 3, 4, 5 | lplnriaN 39553 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑄(le‘𝐾)(𝑅 ∨ 𝑆)) | 
| 7 | simpl1 1191 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝐾 ∈ HL) | |
| 8 | simpl21 1251 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄 ∈ 𝐴) | |
| 9 | simpl23 1253 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑆 ∈ 𝐴) | |
| 10 | 1, 2, 3 | hlatlej1 39377 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑄(le‘𝐾)(𝑄 ∨ 𝑆)) | 
| 11 | 7, 8, 9, 10 | syl3anc 1372 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄(le‘𝐾)(𝑄 ∨ 𝑆)) | 
| 12 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) | |
| 13 | 11, 12 | breqtrd 5168 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄(le‘𝐾)(𝑅 ∨ 𝑆)) | 
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ((𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆) → 𝑄(le‘𝐾)(𝑅 ∨ 𝑆))) | 
| 15 | 14 | necon3bd 2953 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (¬ 𝑄(le‘𝐾)(𝑅 ∨ 𝑆) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆))) | 
| 16 | 6, 15 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 lecple 17305 joincjn 18358 Atomscatm 39265 HLchlt 39352 LPlanesclpl 39495 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 | 
| This theorem is referenced by: cdleme16aN 40262 | 
| Copyright terms: Public domain | W3C validator |