![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnllnneN | Structured version Visualization version GIF version |
Description: Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnri1.j | ⊢ ∨ = (join‘𝐾) |
lplnri1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lplnri1.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
lplnri1.y | ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) |
Ref | Expression |
---|---|
lplnllnneN | ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | lplnri1.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | lplnri1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | lplnri1.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | lplnri1.y | . . 3 ⊢ 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑆) | |
6 | 1, 2, 3, 4, 5 | lplnriaN 37867 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ¬ 𝑄(le‘𝐾)(𝑅 ∨ 𝑆)) |
7 | simpl1 1191 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝐾 ∈ HL) | |
8 | simpl21 1251 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄 ∈ 𝐴) | |
9 | simpl23 1253 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑆 ∈ 𝐴) | |
10 | 1, 2, 3 | hlatlej1 37691 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑄(le‘𝐾)(𝑄 ∨ 𝑆)) |
11 | 7, 8, 9, 10 | syl3anc 1371 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄(le‘𝐾)(𝑄 ∨ 𝑆)) |
12 | simpr 486 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) | |
13 | 11, 12 | breqtrd 5123 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) ∧ (𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆)) → 𝑄(le‘𝐾)(𝑅 ∨ 𝑆)) |
14 | 13 | ex 414 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → ((𝑄 ∨ 𝑆) = (𝑅 ∨ 𝑆) → 𝑄(le‘𝐾)(𝑅 ∨ 𝑆))) |
15 | 14 | necon3bd 2955 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (¬ 𝑄(le‘𝐾)(𝑅 ∨ 𝑆) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆))) |
16 | 6, 15 | mpd 15 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑌 ∈ 𝑃) → (𝑄 ∨ 𝑆) ≠ (𝑅 ∨ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 class class class wbr 5097 ‘cfv 6484 (class class class)co 7342 lecple 17067 joincjn 18127 Atomscatm 37579 HLchlt 37666 LPlanesclpl 37809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-lat 18248 df-clat 18315 df-oposet 37492 df-ol 37494 df-oml 37495 df-covers 37582 df-ats 37583 df-atl 37614 df-cvlat 37638 df-hlat 37667 df-llines 37815 df-lplanes 37816 |
This theorem is referenced by: cdleme16aN 38576 |
Copyright terms: Public domain | W3C validator |