![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnllnneN | Structured version Visualization version GIF version |
Description: Two lattice lines defined by atoms defining a lattice plane are not equal. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnri1.j | β’ β¨ = (joinβπΎ) |
lplnri1.a | β’ π΄ = (AtomsβπΎ) |
lplnri1.p | β’ π = (LPlanesβπΎ) |
lplnri1.y | β’ π = ((π β¨ π ) β¨ π) |
Ref | Expression |
---|---|
lplnllnneN | β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
2 | lplnri1.j | . . 3 β’ β¨ = (joinβπΎ) | |
3 | lplnri1.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | lplnri1.p | . . 3 β’ π = (LPlanesβπΎ) | |
5 | lplnri1.y | . . 3 β’ π = ((π β¨ π ) β¨ π) | |
6 | 1, 2, 3, 4, 5 | lplnriaN 38725 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β Β¬ π(leβπΎ)(π β¨ π)) |
7 | simpl1 1190 | . . . . . 6 β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β§ (π β¨ π) = (π β¨ π)) β πΎ β HL) | |
8 | simpl21 1250 | . . . . . 6 β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β§ (π β¨ π) = (π β¨ π)) β π β π΄) | |
9 | simpl23 1252 | . . . . . 6 β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β§ (π β¨ π) = (π β¨ π)) β π β π΄) | |
10 | 1, 2, 3 | hlatlej1 38549 | . . . . . 6 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π(leβπΎ)(π β¨ π)) |
11 | 7, 8, 9, 10 | syl3anc 1370 | . . . . 5 β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β§ (π β¨ π) = (π β¨ π)) β π(leβπΎ)(π β¨ π)) |
12 | simpr 484 | . . . . 5 β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β§ (π β¨ π) = (π β¨ π)) β (π β¨ π) = (π β¨ π)) | |
13 | 11, 12 | breqtrd 5175 | . . . 4 β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β§ (π β¨ π) = (π β¨ π)) β π(leβπΎ)(π β¨ π)) |
14 | 13 | ex 412 | . . 3 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β ((π β¨ π) = (π β¨ π) β π(leβπΎ)(π β¨ π))) |
15 | 14 | necon3bd 2953 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β (Β¬ π(leβπΎ)(π β¨ π) β (π β¨ π) β (π β¨ π))) |
16 | 6, 15 | mpd 15 | 1 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 class class class wbr 5149 βcfv 6544 (class class class)co 7412 lecple 17209 joincjn 18269 Atomscatm 38437 HLchlt 38524 LPlanesclpl 38667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-lat 18390 df-clat 18457 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 |
This theorem is referenced by: cdleme16aN 39434 |
Copyright terms: Public domain | W3C validator |