Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvh1dim Structured version   Visualization version   GIF version

Theorem dvh1dim 41425
Description: There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.)
Hypotheses
Ref Expression
dvh3dim.h 𝐻 = (LHyp‘𝐾)
dvh3dim.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvh3dim.v 𝑉 = (Base‘𝑈)
dvh1dim.o 0 = (0g𝑈)
dvh1dim.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
dvh1dim (𝜑 → ∃𝑧𝑉 𝑧0 )
Distinct variable groups:   𝑧, 0   𝑧,𝑈   𝑧,𝑉   𝜑,𝑧
Allowed substitution hints:   𝐻(𝑧)   𝐾(𝑧)   𝑊(𝑧)

Proof of Theorem dvh1dim
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 dvh3dim.h . . 3 𝐻 = (LHyp‘𝐾)
2 dvh3dim.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 eqid 2735 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
4 dvh1dim.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
51, 2, 3, 4dvh1dimat 41424 . 2 (𝜑 → ∃𝑝 𝑝 ∈ (LSAtoms‘𝑈))
6 dvh1dim.o . . . 4 0 = (0g𝑈)
71, 2, 4dvhlmod 41093 . . . . 5 (𝜑𝑈 ∈ LMod)
87adantr 480 . . . 4 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → 𝑈 ∈ LMod)
9 simpr 484 . . . 4 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → 𝑝 ∈ (LSAtoms‘𝑈))
106, 3, 8, 9lsateln0 38977 . . 3 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → ∃𝑧𝑝 𝑧0 )
11 dvh3dim.v . . . . . . 7 𝑉 = (Base‘𝑈)
1211, 3, 8, 9lsatssv 38980 . . . . . 6 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → 𝑝𝑉)
1312sseld 3994 . . . . 5 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → (𝑧𝑝𝑧𝑉))
1413anim1d 611 . . . 4 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → ((𝑧𝑝𝑧0 ) → (𝑧𝑉𝑧0 )))
1514reximdv2 3162 . . 3 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → (∃𝑧𝑝 𝑧0 → ∃𝑧𝑉 𝑧0 ))
1610, 15mpd 15 . 2 ((𝜑𝑝 ∈ (LSAtoms‘𝑈)) → ∃𝑧𝑉 𝑧0 )
175, 16exlimddv 1933 1 (𝜑 → ∃𝑧𝑉 𝑧0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  cfv 6563  Basecbs 17245  0gc0g 17486  LModclmod 20875  LSAtomsclsa 38956  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738  df-edring 40740  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212
This theorem is referenced by:  dvh2dim  41428  hdmap14lem14  41864  hgmapval0  41875  hgmapval1  41876  hgmapadd  41877  hgmapmul  41878  hgmaprnlem5N  41883  hgmap11  41885
  Copyright terms: Public domain W3C validator