| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvh1dim | Structured version Visualization version GIF version | ||
| Description: There exists a nonzero vector. (Contributed by NM, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dvh3dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvh3dim.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dvh3dim.v | ⊢ 𝑉 = (Base‘𝑈) |
| dvh1dim.o | ⊢ 0 = (0g‘𝑈) |
| dvh1dim.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| dvh1dim | ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑧 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvh3dim.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvh3dim.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | eqid 2734 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 4 | dvh1dim.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 5 | 1, 2, 3, 4 | dvh1dimat 41384 | . 2 ⊢ (𝜑 → ∃𝑝 𝑝 ∈ (LSAtoms‘𝑈)) |
| 6 | dvh1dim.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 7 | 1, 2, 4 | dvhlmod 41053 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → 𝑈 ∈ LMod) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → 𝑝 ∈ (LSAtoms‘𝑈)) | |
| 10 | 6, 3, 8, 9 | lsateln0 38937 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → ∃𝑧 ∈ 𝑝 𝑧 ≠ 0 ) |
| 11 | dvh3dim.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
| 12 | 11, 3, 8, 9 | lsatssv 38940 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → 𝑝 ⊆ 𝑉) |
| 13 | 12 | sseld 3964 | . . . . 5 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → (𝑧 ∈ 𝑝 → 𝑧 ∈ 𝑉)) |
| 14 | 13 | anim1d 611 | . . . 4 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → ((𝑧 ∈ 𝑝 ∧ 𝑧 ≠ 0 ) → (𝑧 ∈ 𝑉 ∧ 𝑧 ≠ 0 ))) |
| 15 | 14 | reximdv2 3151 | . . 3 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → (∃𝑧 ∈ 𝑝 𝑧 ≠ 0 → ∃𝑧 ∈ 𝑉 𝑧 ≠ 0 )) |
| 16 | 10, 15 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑝 ∈ (LSAtoms‘𝑈)) → ∃𝑧 ∈ 𝑉 𝑧 ≠ 0 ) |
| 17 | 5, 16 | exlimddv 1934 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑧 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 ‘cfv 6542 Basecbs 17230 0gc0g 17460 LModclmod 20831 LSAtomsclsa 38916 HLchlt 39292 LHypclh 39927 DVecHcdvh 41021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38895 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-undef 8281 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-0g 17462 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cntz 19309 df-lsm 19627 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-invr 20361 df-dvr 20374 df-drng 20704 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lvec 21075 df-lsatoms 38918 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-llines 39441 df-lplanes 39442 df-lvols 39443 df-lines 39444 df-psubsp 39446 df-pmap 39447 df-padd 39739 df-lhyp 39931 df-laut 39932 df-ldil 40047 df-ltrn 40048 df-trl 40102 df-tendo 40698 df-edring 40700 df-disoa 40972 df-dvech 41022 df-dib 41082 df-dic 41116 df-dih 41172 |
| This theorem is referenced by: dvh2dim 41388 hdmap14lem14 41824 hgmapval0 41835 hgmapval1 41836 hgmapadd 41837 hgmapmul 41838 hgmaprnlem5N 41843 hgmap11 41845 |
| Copyright terms: Public domain | W3C validator |