| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) | 
| 2 |  | eqid 2736 | . . . 4
⊢
(LSAtoms‘𝑈) =
(LSAtoms‘𝑈) | 
| 3 |  | dochkr1.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 4 |  | dochkr1.u | . . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 5 |  | dochkr1.k | . . . . 5
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 6 | 3, 4, 5 | dvhlmod 41113 | . . . 4
⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 7 |  | dochkr1.n | . . . . 5
⊢ (𝜑 → ( ⊥ ‘( ⊥
‘(𝐿‘𝐺))) ≠ 𝑉) | 
| 8 |  | dochkr1.o | . . . . . 6
⊢  ⊥ =
((ocH‘𝐾)‘𝑊) | 
| 9 |  | dochkr1.v | . . . . . 6
⊢ 𝑉 = (Base‘𝑈) | 
| 10 |  | dochkr1.f | . . . . . 6
⊢ 𝐹 = (LFnl‘𝑈) | 
| 11 |  | dochkr1.l | . . . . . 6
⊢ 𝐿 = (LKer‘𝑈) | 
| 12 |  | dochkr1.g | . . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| 13 | 3, 8, 4, 9, 2, 10,
11, 5, 12 | dochkrsat2 41459 | . . . . 5
⊢ (𝜑 → (( ⊥ ‘( ⊥
‘(𝐿‘𝐺))) ≠ 𝑉 ↔ ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈))) | 
| 14 | 7, 13 | mpbid 232 | . . . 4
⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSAtoms‘𝑈)) | 
| 15 | 1, 2, 6, 14 | lsateln0 38997 | . . 3
⊢ (𝜑 → ∃𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))𝑧 ≠ (0g‘𝑈)) | 
| 16 |  | dochkr1.r | . . . . . 6
⊢ 𝑅 = (Scalar‘𝑈) | 
| 17 |  | eqid 2736 | . . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 18 | 5 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) ∧ 𝑧 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 19 | 12 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) ∧ 𝑧 ≠ (0g‘𝑈)) → 𝐺 ∈ 𝐹) | 
| 20 |  | eldifsn 4785 | . . . . . . . 8
⊢ (𝑧 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ {(0g‘𝑈)}) ↔ (𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ 𝑧 ≠ (0g‘𝑈))) | 
| 21 | 20 | biimpri 228 | . . . . . . 7
⊢ ((𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ 𝑧 ≠ (0g‘𝑈)) → 𝑧 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ {(0g‘𝑈)})) | 
| 22 | 21 | adantll 714 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) ∧ 𝑧 ≠ (0g‘𝑈)) → 𝑧 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ {(0g‘𝑈)})) | 
| 23 | 3, 8, 4, 9, 16, 17, 1, 10, 11, 18, 19, 22 | dochfln0 41480 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) ∧ 𝑧 ≠ (0g‘𝑈)) → (𝐺‘𝑧) ≠ (0g‘𝑅)) | 
| 24 | 23 | ex 412 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) → (𝑧 ≠ (0g‘𝑈) → (𝐺‘𝑧) ≠ (0g‘𝑅))) | 
| 25 | 24 | reximdva 3167 | . . 3
⊢ (𝜑 → (∃𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))𝑧 ≠ (0g‘𝑈) → ∃𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))(𝐺‘𝑧) ≠ (0g‘𝑅))) | 
| 26 | 15, 25 | mpd 15 | . 2
⊢ (𝜑 → ∃𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))(𝐺‘𝑧) ≠ (0g‘𝑅)) | 
| 27 | 9, 10, 11, 6, 12 | lkrssv 39098 | . . . . . . . . 9
⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) | 
| 28 |  | eqid 2736 | . . . . . . . . . 10
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) | 
| 29 | 3, 4, 9, 28, 8 | dochlss 41357 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSubSp‘𝑈)) | 
| 30 | 5, 27, 29 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSubSp‘𝑈)) | 
| 31 | 6, 30 | jca 511 | . . . . . . 7
⊢ (𝜑 → (𝑈 ∈ LMod ∧ ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSubSp‘𝑈))) | 
| 32 | 31 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (𝑈 ∈ LMod ∧ ( ⊥ ‘(𝐿‘𝐺)) ∈ (LSubSp‘𝑈))) | 
| 33 | 3, 4, 5 | dvhlvec 41112 | . . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LVec) | 
| 34 | 33 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → 𝑈 ∈ LVec) | 
| 35 | 16 | lvecdrng 21105 | . . . . . . . . 9
⊢ (𝑈 ∈ LVec → 𝑅 ∈
DivRing) | 
| 36 | 34, 35 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → 𝑅 ∈ DivRing) | 
| 37 | 6 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → 𝑈 ∈ LMod) | 
| 38 | 12 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → 𝐺 ∈ 𝐹) | 
| 39 | 3, 4, 9, 8 | dochssv 41358 | . . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐺) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) | 
| 40 | 5, 27, 39 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐺)) ⊆ 𝑉) | 
| 41 | 40 | sselda 3982 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) → 𝑧 ∈ 𝑉) | 
| 42 | 41 | 3adant3 1132 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → 𝑧 ∈ 𝑉) | 
| 43 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 44 | 16, 43, 9, 10 | lflcl 39066 | . . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑧 ∈ 𝑉) → (𝐺‘𝑧) ∈ (Base‘𝑅)) | 
| 45 | 37, 38, 42, 44 | syl3anc 1372 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (𝐺‘𝑧) ∈ (Base‘𝑅)) | 
| 46 |  | simp3 1138 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (𝐺‘𝑧) ≠ (0g‘𝑅)) | 
| 47 |  | eqid 2736 | . . . . . . . . 9
⊢
(invr‘𝑅) = (invr‘𝑅) | 
| 48 | 43, 17, 47 | drnginvrcl 20754 | . . . . . . . 8
⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑧) ∈ (Base‘𝑅) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝐺‘𝑧)) ∈ (Base‘𝑅)) | 
| 49 | 36, 45, 46, 48 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝐺‘𝑧)) ∈ (Base‘𝑅)) | 
| 50 |  | simp2 1137 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) | 
| 51 | 49, 50 | jca 511 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝐺‘𝑧)) ∈ (Base‘𝑅) ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)))) | 
| 52 |  | eqid 2736 | . . . . . . 7
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) | 
| 53 | 16, 52, 43, 28 | lssvscl 20954 | . . . . . 6
⊢ (((𝑈 ∈ LMod ∧ ( ⊥
‘(𝐿‘𝐺)) ∈ (LSubSp‘𝑈)) ∧
(((invr‘𝑅)‘(𝐺‘𝑧)) ∈ (Base‘𝑅) ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)))) → (((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ∈ ( ⊥ ‘(𝐿‘𝐺))) | 
| 54 | 32, 51, 53 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ∈ ( ⊥ ‘(𝐿‘𝐺))) | 
| 55 | 43, 17, 47 | drnginvrn0 20755 | . . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑧) ∈ (Base‘𝑅) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝐺‘𝑧)) ≠ (0g‘𝑅)) | 
| 56 | 36, 45, 46, 55 | syl3anc 1372 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → ((invr‘𝑅)‘(𝐺‘𝑧)) ≠ (0g‘𝑅)) | 
| 57 | 6 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) → 𝑈 ∈ LMod) | 
| 58 | 12 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) → 𝐺 ∈ 𝐹) | 
| 59 |  | dochkr1.z | . . . . . . . . . . 11
⊢  0 =
(0g‘𝑈) | 
| 60 | 16, 17, 59, 10 | lfl0 39067 | . . . . . . . . . 10
⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺‘ 0 ) =
(0g‘𝑅)) | 
| 61 | 57, 58, 60 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) → (𝐺‘ 0 ) =
(0g‘𝑅)) | 
| 62 |  | fveqeq2 6914 | . . . . . . . . 9
⊢ (𝑧 = 0 → ((𝐺‘𝑧) = (0g‘𝑅) ↔ (𝐺‘ 0 ) =
(0g‘𝑅))) | 
| 63 | 61, 62 | syl5ibrcom 247 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) → (𝑧 = 0 → (𝐺‘𝑧) = (0g‘𝑅))) | 
| 64 | 63 | necon3d 2960 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))) → ((𝐺‘𝑧) ≠ (0g‘𝑅) → 𝑧 ≠ 0 )) | 
| 65 | 64 | 3impia 1117 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → 𝑧 ≠ 0 ) | 
| 66 | 9, 52, 16, 43, 17, 59, 34, 49, 42 | lvecvsn0 21112 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → ((((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ≠ 0 ↔
(((invr‘𝑅)‘(𝐺‘𝑧)) ≠ (0g‘𝑅) ∧ 𝑧 ≠ 0 ))) | 
| 67 | 56, 65, 66 | mpbir2and 713 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ≠ 0 ) | 
| 68 |  | eldifsn 4785 | . . . . 5
⊢
((((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) ↔
((((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ≠ 0 )) | 
| 69 | 54, 67, 68 | sylanbrc 583 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })) | 
| 70 |  | eqid 2736 | . . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 71 | 16, 43, 70, 9, 52, 10 | lflmul 39070 | . . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ (((invr‘𝑅)‘(𝐺‘𝑧)) ∈ (Base‘𝑅) ∧ 𝑧 ∈ 𝑉)) → (𝐺‘(((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧)) = (((invr‘𝑅)‘(𝐺‘𝑧))(.r‘𝑅)(𝐺‘𝑧))) | 
| 72 | 37, 38, 49, 42, 71 | syl112anc 1375 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (𝐺‘(((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧)) = (((invr‘𝑅)‘(𝐺‘𝑧))(.r‘𝑅)(𝐺‘𝑧))) | 
| 73 |  | dochkr1.i | . . . . . . 7
⊢  1 =
(1r‘𝑅) | 
| 74 | 43, 17, 70, 73, 47 | drnginvrl 20757 | . . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑧) ∈ (Base‘𝑅) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝐺‘𝑧))(.r‘𝑅)(𝐺‘𝑧)) = 1 ) | 
| 75 | 36, 45, 46, 74 | syl3anc 1372 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (((invr‘𝑅)‘(𝐺‘𝑧))(.r‘𝑅)(𝐺‘𝑧)) = 1 ) | 
| 76 | 72, 75 | eqtrd 2776 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → (𝐺‘(((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧)) = 1 ) | 
| 77 |  | fveqeq2 6914 | . . . . 5
⊢ (𝑥 =
(((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) → ((𝐺‘𝑥) = 1 ↔ (𝐺‘(((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧)) = 1 )) | 
| 78 | 77 | rspcev 3621 | . . . 4
⊢
(((((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧) ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 }) ∧ (𝐺‘(((invr‘𝑅)‘(𝐺‘𝑧))( ·𝑠
‘𝑈)𝑧)) = 1 ) → ∃𝑥 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })(𝐺‘𝑥) = 1 ) | 
| 79 | 69, 76, 78 | syl2anc 584 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺)) ∧ (𝐺‘𝑧) ≠ (0g‘𝑅)) → ∃𝑥 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })(𝐺‘𝑥) = 1 ) | 
| 80 | 79 | rexlimdv3a 3158 | . 2
⊢ (𝜑 → (∃𝑧 ∈ ( ⊥ ‘(𝐿‘𝐺))(𝐺‘𝑧) ≠ (0g‘𝑅) → ∃𝑥 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })(𝐺‘𝑥) = 1 )) | 
| 81 | 26, 80 | mpd 15 | 1
⊢ (𝜑 → ∃𝑥 ∈ (( ⊥ ‘(𝐿‘𝐺)) ∖ { 0 })(𝐺‘𝑥) = 1 ) |