Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’
(0gβπ) = (0gβπ) |
2 | | eqid 2732 |
. . . 4
β’
(LSAtomsβπ) =
(LSAtomsβπ) |
3 | | dochkr1OLD.h |
. . . . 5
β’ π» = (LHypβπΎ) |
4 | | dochkr1OLD.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
5 | | dochkr1OLD.k |
. . . . 5
β’ (π β (πΎ β HL β§ π β π»)) |
6 | 3, 4, 5 | dvhlmod 39969 |
. . . 4
β’ (π β π β LMod) |
7 | | dochkr1OLD.n |
. . . . 5
β’ (π β ( β₯ β( β₯
β(πΏβπΊ))) β π) |
8 | | dochkr1OLD.o |
. . . . . 6
β’ β₯ =
((ocHβπΎ)βπ) |
9 | | dochkr1OLD.v |
. . . . . 6
β’ π = (Baseβπ) |
10 | | dochkr1OLD.f |
. . . . . 6
β’ πΉ = (LFnlβπ) |
11 | | dochkr1OLD.l |
. . . . . 6
β’ πΏ = (LKerβπ) |
12 | | dochkr1OLD.g |
. . . . . 6
β’ (π β πΊ β πΉ) |
13 | 3, 8, 4, 9, 2, 10,
11, 5, 12 | dochkrsat2 40315 |
. . . . 5
β’ (π β (( β₯ β( β₯
β(πΏβπΊ))) β π β ( β₯ β(πΏβπΊ)) β (LSAtomsβπ))) |
14 | 7, 13 | mpbid 231 |
. . . 4
β’ (π β ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) |
15 | 1, 2, 6, 14 | lsateln0 37853 |
. . 3
β’ (π β βπ§ β ( β₯ β(πΏβπΊ))π§ β (0gβπ)) |
16 | | dochkr1OLD.r |
. . . . . 6
β’ π
= (Scalarβπ) |
17 | | dochkr1OLD.z |
. . . . . 6
β’ 0 =
(0gβπ
) |
18 | 5 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π§ β ( β₯ β(πΏβπΊ))) β§ π§ β (0gβπ)) β (πΎ β HL β§ π β π»)) |
19 | 12 | ad2antrr 724 |
. . . . . 6
β’ (((π β§ π§ β ( β₯ β(πΏβπΊ))) β§ π§ β (0gβπ)) β πΊ β πΉ) |
20 | | eldifsn 4789 |
. . . . . . . 8
β’ (π§ β (( β₯ β(πΏβπΊ)) β {(0gβπ)}) β (π§ β ( β₯ β(πΏβπΊ)) β§ π§ β (0gβπ))) |
21 | 20 | biimpri 227 |
. . . . . . 7
β’ ((π§ β ( β₯ β(πΏβπΊ)) β§ π§ β (0gβπ)) β π§ β (( β₯ β(πΏβπΊ)) β {(0gβπ)})) |
22 | 21 | adantll 712 |
. . . . . 6
β’ (((π β§ π§ β ( β₯ β(πΏβπΊ))) β§ π§ β (0gβπ)) β π§ β (( β₯ β(πΏβπΊ)) β {(0gβπ)})) |
23 | 3, 8, 4, 9, 16, 17, 1, 10, 11, 18, 19, 22 | dochfln0 40336 |
. . . . 5
β’ (((π β§ π§ β ( β₯ β(πΏβπΊ))) β§ π§ β (0gβπ)) β (πΊβπ§) β 0 ) |
24 | 23 | ex 413 |
. . . 4
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ))) β (π§ β (0gβπ) β (πΊβπ§) β 0 )) |
25 | 24 | reximdva 3168 |
. . 3
β’ (π β (βπ§ β ( β₯ β(πΏβπΊ))π§ β (0gβπ) β βπ§ β ( β₯ β(πΏβπΊ))(πΊβπ§) β 0 )) |
26 | 15, 25 | mpd 15 |
. 2
β’ (π β βπ§ β ( β₯ β(πΏβπΊ))(πΊβπ§) β 0 ) |
27 | 9, 10, 11, 6, 12 | lkrssv 37954 |
. . . . . . . 8
β’ (π β (πΏβπΊ) β π) |
28 | | eqid 2732 |
. . . . . . . . 9
β’
(LSubSpβπ) =
(LSubSpβπ) |
29 | 3, 4, 9, 28, 8 | dochlss 40213 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (πΏβπΊ) β π) β ( β₯ β(πΏβπΊ)) β (LSubSpβπ)) |
30 | 5, 27, 29 | syl2anc 584 |
. . . . . . 7
β’ (π β ( β₯ β(πΏβπΊ)) β (LSubSpβπ)) |
31 | 6, 30 | jca 512 |
. . . . . 6
β’ (π β (π β LMod β§ ( β₯ β(πΏβπΊ)) β (LSubSpβπ))) |
32 | 31 | 3ad2ant1 1133 |
. . . . 5
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β (π β LMod β§ ( β₯
β(πΏβπΊ)) β (LSubSpβπ))) |
33 | 3, 4, 5 | dvhlvec 39968 |
. . . . . . . 8
β’ (π β π β LVec) |
34 | 33 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β π β LVec) |
35 | 16 | lvecdrng 20708 |
. . . . . . 7
β’ (π β LVec β π
β
DivRing) |
36 | 34, 35 | syl 17 |
. . . . . 6
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β π
β DivRing) |
37 | 6 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β π β LMod) |
38 | 12 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β πΊ β πΉ) |
39 | 3, 4, 9, 8 | dochssv 40214 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ (πΏβπΊ) β π) β ( β₯ β(πΏβπΊ)) β π) |
40 | 5, 27, 39 | syl2anc 584 |
. . . . . . . . 9
β’ (π β ( β₯ β(πΏβπΊ)) β π) |
41 | 40 | sselda 3981 |
. . . . . . . 8
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ))) β π§ β π) |
42 | 41 | 3adant3 1132 |
. . . . . . 7
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β π§ β π) |
43 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
44 | 16, 43, 9, 10 | lflcl 37922 |
. . . . . . 7
β’ ((π β LMod β§ πΊ β πΉ β§ π§ β π) β (πΊβπ§) β (Baseβπ
)) |
45 | 37, 38, 42, 44 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β (πΊβπ§) β (Baseβπ
)) |
46 | | simp3 1138 |
. . . . . 6
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β (πΊβπ§) β 0 ) |
47 | | eqid 2732 |
. . . . . . 7
β’
(invrβπ
) = (invrβπ
) |
48 | 43, 17, 47 | drnginvrcl 20329 |
. . . . . 6
β’ ((π
β DivRing β§ (πΊβπ§) β (Baseβπ
) β§ (πΊβπ§) β 0 ) β
((invrβπ
)β(πΊβπ§)) β (Baseβπ
)) |
49 | 36, 45, 46, 48 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β
((invrβπ
)β(πΊβπ§)) β (Baseβπ
)) |
50 | | simp2 1137 |
. . . . 5
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β π§ β ( β₯ β(πΏβπΊ))) |
51 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
52 | 16, 51, 43, 28 | lssvscl 20558 |
. . . . 5
β’ (((π β LMod β§ ( β₯
β(πΏβπΊ)) β (LSubSpβπ)) β§
(((invrβπ
)β(πΊβπ§)) β (Baseβπ
) β§ π§ β ( β₯ β(πΏβπΊ)))) β (((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§) β ( β₯ β(πΏβπΊ))) |
53 | 32, 49, 50, 52 | syl12anc 835 |
. . . 4
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β
(((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§) β ( β₯ β(πΏβπΊ))) |
54 | | eqid 2732 |
. . . . . . 7
β’
(.rβπ
) = (.rβπ
) |
55 | 16, 43, 54, 9, 51, 10 | lflmul 37926 |
. . . . . 6
β’ ((π β LMod β§ πΊ β πΉ β§ (((invrβπ
)β(πΊβπ§)) β (Baseβπ
) β§ π§ β π)) β (πΊβ(((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§)) = (((invrβπ
)β(πΊβπ§))(.rβπ
)(πΊβπ§))) |
56 | 37, 38, 49, 42, 55 | syl112anc 1374 |
. . . . 5
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β (πΊβ(((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§)) = (((invrβπ
)β(πΊβπ§))(.rβπ
)(πΊβπ§))) |
57 | | dochkr1OLD.i |
. . . . . . 7
β’ 1 =
(1rβπ
) |
58 | 43, 17, 54, 57, 47 | drnginvrl 20332 |
. . . . . 6
β’ ((π
β DivRing β§ (πΊβπ§) β (Baseβπ
) β§ (πΊβπ§) β 0 ) β
(((invrβπ
)β(πΊβπ§))(.rβπ
)(πΊβπ§)) = 1 ) |
59 | 36, 45, 46, 58 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β
(((invrβπ
)β(πΊβπ§))(.rβπ
)(πΊβπ§)) = 1 ) |
60 | 56, 59 | eqtrd 2772 |
. . . 4
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β (πΊβ(((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§)) = 1 ) |
61 | | fveqeq2 6897 |
. . . . 5
β’ (π₯ =
(((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§) β ((πΊβπ₯) = 1 β (πΊβ(((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§)) = 1 )) |
62 | 61 | rspcev 3612 |
. . . 4
β’
(((((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§) β ( β₯ β(πΏβπΊ)) β§ (πΊβ(((invrβπ
)β(πΊβπ§))( Β·π
βπ)π§)) = 1 ) β βπ₯ β ( β₯ β(πΏβπΊ))(πΊβπ₯) = 1 ) |
63 | 53, 60, 62 | syl2anc 584 |
. . 3
β’ ((π β§ π§ β ( β₯ β(πΏβπΊ)) β§ (πΊβπ§) β 0 ) β βπ₯ β ( β₯ β(πΏβπΊ))(πΊβπ₯) = 1 ) |
64 | 63 | rexlimdv3a 3159 |
. 2
β’ (π β (βπ§ β ( β₯ β(πΏβπΊ))(πΊβπ§) β 0 β βπ₯ β ( β₯ β(πΏβπΊ))(πΊβπ₯) = 1 )) |
65 | 26, 64 | mpd 15 |
1
β’ (π β βπ₯ β ( β₯ β(πΏβπΊ))(πΊβπ₯) = 1 ) |