Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem40 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39596. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem38.p | ⊢ + = (+g‘𝑈) |
lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lcfrlem40 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem38.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
2 | eqid 2738 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
3 | lcfrlem38.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | lcfrlem38.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | lcfrlem38.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | 3, 4, 5 | dvhlmod 39121 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | lcfrlem38.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
8 | eqid 2738 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
9 | lcfrlem38.p | . . . 4 ⊢ + = (+g‘𝑈) | |
10 | lcfrlem38.sp | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
11 | lcfrlem38.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
12 | lcfrlem38.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
13 | lcfrlem38.q | . . . . . 6 ⊢ 𝑄 = (LSubSp‘𝐷) | |
14 | lcfrlem38.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
15 | lcfrlem38.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
16 | lcfrlem38.xe | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
17 | 3, 7, 4, 8, 11, 12, 13, 14, 5, 15, 16 | lcfrlem4 39556 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
18 | lcfrlem38.x | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
19 | eldifsn 4722 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑋 ∈ (Base‘𝑈) ∧ 𝑋 ≠ 0 )) | |
20 | 17, 18, 19 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑈) ∖ { 0 })) |
21 | lcfrlem38.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
22 | 3, 7, 4, 8, 11, 12, 13, 14, 5, 15, 21 | lcfrlem4 39556 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
23 | lcfrlem38.y | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
24 | eldifsn 4722 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑌 ∈ (Base‘𝑈) ∧ 𝑌 ≠ 0 )) | |
25 | 22, 23, 24 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝑈) ∖ { 0 })) |
26 | lcfrlem38.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
27 | 3, 7, 4, 8, 9, 1, 10, 2, 5, 20, 25, 26 | lcfrlem21 39574 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ (LSAtoms‘𝑈)) |
28 | 1, 2, 6, 27 | lsateln0 37006 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))𝑖 ≠ 0 ) |
29 | lcfrlem38.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
30 | lcfrlem38.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
31 | 5 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
32 | 15 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝐺 ∈ 𝑄) |
33 | lcfrlem38.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
34 | 33 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝐺 ⊆ 𝐶) |
35 | 16 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑋 ∈ 𝐸) |
36 | 21 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑌 ∈ 𝐸) |
37 | 18 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑋 ≠ 0 ) |
38 | 23 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑌 ≠ 0 ) |
39 | 26 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
40 | eqid 2738 | . . . 4 ⊢ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
41 | simp2 1136 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) | |
42 | simp3 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑖 ≠ 0 ) | |
43 | 3, 7, 4, 9, 29, 11, 12, 13, 30, 14, 31, 32, 34, 35, 36, 1, 37, 38, 10, 39, 40, 41, 42 | lcfrlem39 39592 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → (𝑋 + 𝑌) ∈ 𝐸) |
44 | 43 | rexlimdv3a 3214 | . 2 ⊢ (𝜑 → (∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))𝑖 ≠ 0 → (𝑋 + 𝑌) ∈ 𝐸)) |
45 | 28, 44 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 ∖ cdif 3885 ∩ cin 3887 ⊆ wss 3888 {csn 4563 {cpr 4565 ∪ ciun 4926 ‘cfv 6435 (class class class)co 7277 Basecbs 16910 +gcplusg 16960 0gc0g 17148 LSubSpclss 20191 LSpanclspn 20231 LSAtomsclsa 36985 LFnlclfn 37068 LKerclk 37096 LDualcld 37134 HLchlt 37361 LHypclh 37995 DVecHcdvh 39089 ocHcoch 39358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 ax-riotaBAD 36964 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8040 df-undef 8087 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-er 8496 df-map 8615 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-n0 12232 df-z 12318 df-uz 12581 df-fz 13238 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-0g 17150 df-mre 17293 df-mrc 17294 df-acs 17296 df-proset 18011 df-poset 18029 df-plt 18046 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-p0 18141 df-p1 18142 df-lat 18148 df-clat 18215 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-grp 18578 df-minusg 18579 df-sbg 18580 df-subg 18750 df-cntz 18921 df-oppg 18948 df-lsm 19239 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-dvr 19923 df-drng 19991 df-lmod 20123 df-lss 20192 df-lsp 20232 df-lvec 20363 df-lsatoms 36987 df-lshyp 36988 df-lcv 37030 df-lfl 37069 df-lkr 37097 df-ldual 37135 df-oposet 37187 df-ol 37189 df-oml 37190 df-covers 37277 df-ats 37278 df-atl 37309 df-cvlat 37333 df-hlat 37362 df-llines 37509 df-lplanes 37510 df-lvols 37511 df-lines 37512 df-psubsp 37514 df-pmap 37515 df-padd 37807 df-lhyp 37999 df-laut 38000 df-ldil 38115 df-ltrn 38116 df-trl 38170 df-tgrp 38754 df-tendo 38766 df-edring 38768 df-dveca 39014 df-disoa 39040 df-dvech 39090 df-dib 39150 df-dic 39184 df-dih 39240 df-doch 39359 df-djh 39406 |
This theorem is referenced by: lcfrlem41 39594 |
Copyright terms: Public domain | W3C validator |