Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem40 Structured version   Visualization version   GIF version

Theorem lcfrlem40 37603
Description: Lemma for lcfr 37606. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
lcfrlem38.sp 𝑁 = (LSpan‘𝑈)
lcfrlem38.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem40 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑓,𝑔,𝐿   ,𝑓,𝑔   + ,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   0 ,𝑓,𝑔   𝜑,𝑔   𝑔,𝑁
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓,𝑔)   𝐷(𝑓)   𝑄(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑁(𝑓)   𝑊(𝑓,𝑔)

Proof of Theorem lcfrlem40
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lcfrlem38.z . . 3 0 = (0g𝑈)
2 eqid 2799 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
3 lcfrlem38.h . . . 4 𝐻 = (LHyp‘𝐾)
4 lcfrlem38.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 37131 . . 3 (𝜑𝑈 ∈ LMod)
7 lcfrlem38.o . . . 4 = ((ocH‘𝐾)‘𝑊)
8 eqid 2799 . . . 4 (Base‘𝑈) = (Base‘𝑈)
9 lcfrlem38.p . . . 4 + = (+g𝑈)
10 lcfrlem38.sp . . . 4 𝑁 = (LSpan‘𝑈)
11 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
12 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
13 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
14 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
15 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
16 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
173, 7, 4, 8, 11, 12, 13, 14, 5, 15, 16lcfrlem4 37566 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑈))
18 lcfrlem38.x . . . . 5 (𝜑𝑋0 )
19 eldifsn 4506 . . . . 5 (𝑋 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑋 ∈ (Base‘𝑈) ∧ 𝑋0 ))
2017, 18, 19sylanbrc 579 . . . 4 (𝜑𝑋 ∈ ((Base‘𝑈) ∖ { 0 }))
21 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
223, 7, 4, 8, 11, 12, 13, 14, 5, 15, 21lcfrlem4 37566 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑈))
23 lcfrlem38.y . . . . 5 (𝜑𝑌0 )
24 eldifsn 4506 . . . . 5 (𝑌 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑌 ∈ (Base‘𝑈) ∧ 𝑌0 ))
2522, 23, 24sylanbrc 579 . . . 4 (𝜑𝑌 ∈ ((Base‘𝑈) ∖ { 0 }))
26 lcfrlem38.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
273, 7, 4, 8, 9, 1, 10, 2, 5, 20, 25, 26lcfrlem21 37584 . . 3 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ (LSAtoms‘𝑈))
281, 2, 6, 27lsateln0 35016 . 2 (𝜑 → ∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))𝑖0 )
29 lcfrlem38.f . . . 4 𝐹 = (LFnl‘𝑈)
30 lcfrlem38.c . . . 4 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
3153ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32153ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝐺𝑄)
33 lcfrlem38.gs . . . . 5 (𝜑𝐺𝐶)
34333ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝐺𝐶)
35163ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑋𝐸)
36213ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑌𝐸)
37183ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑋0 )
38233ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑌0 )
39263ad2ant1 1164 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40 eqid 2799 . . . 4 ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
41 simp2 1168 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})))
42 simp3 1169 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑖0 )
433, 7, 4, 9, 29, 11, 12, 13, 30, 14, 31, 32, 34, 35, 36, 1, 37, 38, 10, 39, 40, 41, 42lcfrlem39 37602 . . 3 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝑋 + 𝑌) ∈ 𝐸)
4443rexlimdv3a 3214 . 2 (𝜑 → (∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))𝑖0 → (𝑋 + 𝑌) ∈ 𝐸))
4528, 44mpd 15 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wrex 3090  {crab 3093  cdif 3766  cin 3768  wss 3769  {csn 4368  {cpr 4370   ciun 4710  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  0gc0g 16415  LSubSpclss 19250  LSpanclspn 19292  LSAtomsclsa 34995  LFnlclfn 35078  LKerclk 35106  LDualcld 35144  HLchlt 35371  LHypclh 36005  DVecHcdvh 37099  ocHcoch 37368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-riotaBAD 34974
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-undef 7637  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-sca 16283  df-vsca 16284  df-0g 16417  df-mre 16561  df-mrc 16562  df-acs 16564  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-cntz 18062  df-oppg 18088  df-lsm 18364  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-dvr 18999  df-drng 19067  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lvec 19424  df-lsatoms 34997  df-lshyp 34998  df-lcv 35040  df-lfl 35079  df-lkr 35107  df-ldual 35145  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372  df-llines 35519  df-lplanes 35520  df-lvols 35521  df-lines 35522  df-psubsp 35524  df-pmap 35525  df-padd 35817  df-lhyp 36009  df-laut 36010  df-ldil 36125  df-ltrn 36126  df-trl 36180  df-tgrp 36764  df-tendo 36776  df-edring 36778  df-dveca 37024  df-disoa 37050  df-dvech 37100  df-dib 37160  df-dic 37194  df-dih 37250  df-doch 37369  df-djh 37416
This theorem is referenced by:  lcfrlem41  37604
  Copyright terms: Public domain W3C validator