| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem40 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41562. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem38.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcfrlem38.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcfrlem38.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcfrlem38.p | ⊢ + = (+g‘𝑈) |
| lcfrlem38.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem38.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcfrlem38.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem38.q | ⊢ 𝑄 = (LSubSp‘𝐷) |
| lcfrlem38.c | ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcfrlem38.e | ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) |
| lcfrlem38.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lcfrlem38.g | ⊢ (𝜑 → 𝐺 ∈ 𝑄) |
| lcfrlem38.gs | ⊢ (𝜑 → 𝐺 ⊆ 𝐶) |
| lcfrlem38.xe | ⊢ (𝜑 → 𝑋 ∈ 𝐸) |
| lcfrlem38.ye | ⊢ (𝜑 → 𝑌 ∈ 𝐸) |
| lcfrlem38.z | ⊢ 0 = (0g‘𝑈) |
| lcfrlem38.x | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| lcfrlem38.y | ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| lcfrlem38.sp | ⊢ 𝑁 = (LSpan‘𝑈) |
| lcfrlem38.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| Ref | Expression |
|---|---|
| lcfrlem40 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem38.z | . . 3 ⊢ 0 = (0g‘𝑈) | |
| 2 | eqid 2734 | . . 3 ⊢ (LSAtoms‘𝑈) = (LSAtoms‘𝑈) | |
| 3 | lcfrlem38.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | lcfrlem38.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | lcfrlem38.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | 3, 4, 5 | dvhlmod 41087 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 7 | lcfrlem38.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 8 | eqid 2734 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 9 | lcfrlem38.p | . . . 4 ⊢ + = (+g‘𝑈) | |
| 10 | lcfrlem38.sp | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 11 | lcfrlem38.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
| 12 | lcfrlem38.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
| 13 | lcfrlem38.q | . . . . . 6 ⊢ 𝑄 = (LSubSp‘𝐷) | |
| 14 | lcfrlem38.e | . . . . . 6 ⊢ 𝐸 = ∪ 𝑔 ∈ 𝐺 ( ⊥ ‘(𝐿‘𝑔)) | |
| 15 | lcfrlem38.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝑄) | |
| 16 | lcfrlem38.xe | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐸) | |
| 17 | 3, 7, 4, 8, 11, 12, 13, 14, 5, 15, 16 | lcfrlem4 41522 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
| 18 | lcfrlem38.x | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) | |
| 19 | eldifsn 4766 | . . . . 5 ⊢ (𝑋 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑋 ∈ (Base‘𝑈) ∧ 𝑋 ≠ 0 )) | |
| 20 | 17, 18, 19 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ((Base‘𝑈) ∖ { 0 })) |
| 21 | lcfrlem38.ye | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐸) | |
| 22 | 3, 7, 4, 8, 11, 12, 13, 14, 5, 15, 21 | lcfrlem4 41522 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑈)) |
| 23 | lcfrlem38.y | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 0 ) | |
| 24 | eldifsn 4766 | . . . . 5 ⊢ (𝑌 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑌 ∈ (Base‘𝑈) ∧ 𝑌 ≠ 0 )) | |
| 25 | 22, 23, 24 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ ((Base‘𝑈) ∖ { 0 })) |
| 26 | lcfrlem38.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 27 | 3, 7, 4, 8, 9, 1, 10, 2, 5, 20, 25, 26 | lcfrlem21 41540 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∈ (LSAtoms‘𝑈)) |
| 28 | 1, 2, 6, 27 | lsateln0 38971 | . 2 ⊢ (𝜑 → ∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))𝑖 ≠ 0 ) |
| 29 | lcfrlem38.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 30 | lcfrlem38.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 31 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 32 | 15 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝐺 ∈ 𝑄) |
| 33 | lcfrlem38.gs | . . . . 5 ⊢ (𝜑 → 𝐺 ⊆ 𝐶) | |
| 34 | 33 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝐺 ⊆ 𝐶) |
| 35 | 16 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑋 ∈ 𝐸) |
| 36 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑌 ∈ 𝐸) |
| 37 | 18 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑋 ≠ 0 ) |
| 38 | 23 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑌 ≠ 0 ) |
| 39 | 26 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 40 | eqid 2734 | . . . 4 ⊢ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
| 41 | simp2 1137 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))) | |
| 42 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → 𝑖 ≠ 0 ) | |
| 43 | 3, 7, 4, 9, 29, 11, 12, 13, 30, 14, 31, 32, 34, 35, 36, 1, 37, 38, 10, 39, 40, 41, 42 | lcfrlem39 41558 | . . 3 ⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) ∧ 𝑖 ≠ 0 ) → (𝑋 + 𝑌) ∈ 𝐸) |
| 44 | 43 | rexlimdv3a 3146 | . 2 ⊢ (𝜑 → (∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)}))𝑖 ≠ 0 → (𝑋 + 𝑌) ∈ 𝐸)) |
| 45 | 28, 44 | mpd 15 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 {crab 3419 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 {csn 4606 {cpr 4608 ∪ ciun 4971 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 0gc0g 17456 LSubSpclss 20898 LSpanclspn 20938 LSAtomsclsa 38950 LFnlclfn 39033 LKerclk 39061 LDualcld 39099 HLchlt 39326 LHypclh 39961 DVecHcdvh 41055 ocHcoch 41324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-0g 17458 df-mre 17601 df-mrc 17602 df-acs 17604 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-oppg 19334 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-nzr 20482 df-rlreg 20663 df-domn 20664 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lvec 21071 df-lsatoms 38952 df-lshyp 38953 df-lcv 38995 df-lfl 39034 df-lkr 39062 df-ldual 39100 df-oposet 39152 df-ol 39154 df-oml 39155 df-covers 39242 df-ats 39243 df-atl 39274 df-cvlat 39298 df-hlat 39327 df-llines 39475 df-lplanes 39476 df-lvols 39477 df-lines 39478 df-psubsp 39480 df-pmap 39481 df-padd 39773 df-lhyp 39965 df-laut 39966 df-ldil 40081 df-ltrn 40082 df-trl 40136 df-tgrp 40720 df-tendo 40732 df-edring 40734 df-dveca 40980 df-disoa 41006 df-dvech 41056 df-dib 41116 df-dic 41150 df-dih 41206 df-doch 41325 df-djh 41372 |
| This theorem is referenced by: lcfrlem41 41560 |
| Copyright terms: Public domain | W3C validator |