Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem40 Structured version   Visualization version   GIF version

Theorem lcfrlem40 41559
Description: Lemma for lcfr 41562. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem38.h 𝐻 = (LHyp‘𝐾)
lcfrlem38.o = ((ocH‘𝐾)‘𝑊)
lcfrlem38.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem38.p + = (+g𝑈)
lcfrlem38.f 𝐹 = (LFnl‘𝑈)
lcfrlem38.l 𝐿 = (LKer‘𝑈)
lcfrlem38.d 𝐷 = (LDual‘𝑈)
lcfrlem38.q 𝑄 = (LSubSp‘𝐷)
lcfrlem38.c 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfrlem38.e 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
lcfrlem38.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem38.g (𝜑𝐺𝑄)
lcfrlem38.gs (𝜑𝐺𝐶)
lcfrlem38.xe (𝜑𝑋𝐸)
lcfrlem38.ye (𝜑𝑌𝐸)
lcfrlem38.z 0 = (0g𝑈)
lcfrlem38.x (𝜑𝑋0 )
lcfrlem38.y (𝜑𝑌0 )
lcfrlem38.sp 𝑁 = (LSpan‘𝑈)
lcfrlem38.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Assertion
Ref Expression
lcfrlem40 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Distinct variable groups:   𝐷,𝑔   𝑔,𝐺   𝑓,𝑔,𝐿   ,𝑓,𝑔   + ,𝑓,𝑔   𝑈,𝑓,𝑔   𝑓,𝑋,𝑔   𝑓,𝑌,𝑔   0 ,𝑓,𝑔   𝜑,𝑔   𝑔,𝑁
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓,𝑔)   𝐷(𝑓)   𝑄(𝑓,𝑔)   𝐸(𝑓,𝑔)   𝐹(𝑓,𝑔)   𝐺(𝑓)   𝐻(𝑓,𝑔)   𝐾(𝑓,𝑔)   𝑁(𝑓)   𝑊(𝑓,𝑔)

Proof of Theorem lcfrlem40
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 lcfrlem38.z . . 3 0 = (0g𝑈)
2 eqid 2734 . . 3 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
3 lcfrlem38.h . . . 4 𝐻 = (LHyp‘𝐾)
4 lcfrlem38.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcfrlem38.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
63, 4, 5dvhlmod 41087 . . 3 (𝜑𝑈 ∈ LMod)
7 lcfrlem38.o . . . 4 = ((ocH‘𝐾)‘𝑊)
8 eqid 2734 . . . 4 (Base‘𝑈) = (Base‘𝑈)
9 lcfrlem38.p . . . 4 + = (+g𝑈)
10 lcfrlem38.sp . . . 4 𝑁 = (LSpan‘𝑈)
11 lcfrlem38.l . . . . . 6 𝐿 = (LKer‘𝑈)
12 lcfrlem38.d . . . . . 6 𝐷 = (LDual‘𝑈)
13 lcfrlem38.q . . . . . 6 𝑄 = (LSubSp‘𝐷)
14 lcfrlem38.e . . . . . 6 𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))
15 lcfrlem38.g . . . . . 6 (𝜑𝐺𝑄)
16 lcfrlem38.xe . . . . . 6 (𝜑𝑋𝐸)
173, 7, 4, 8, 11, 12, 13, 14, 5, 15, 16lcfrlem4 41522 . . . . 5 (𝜑𝑋 ∈ (Base‘𝑈))
18 lcfrlem38.x . . . . 5 (𝜑𝑋0 )
19 eldifsn 4766 . . . . 5 (𝑋 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑋 ∈ (Base‘𝑈) ∧ 𝑋0 ))
2017, 18, 19sylanbrc 583 . . . 4 (𝜑𝑋 ∈ ((Base‘𝑈) ∖ { 0 }))
21 lcfrlem38.ye . . . . . 6 (𝜑𝑌𝐸)
223, 7, 4, 8, 11, 12, 13, 14, 5, 15, 21lcfrlem4 41522 . . . . 5 (𝜑𝑌 ∈ (Base‘𝑈))
23 lcfrlem38.y . . . . 5 (𝜑𝑌0 )
24 eldifsn 4766 . . . . 5 (𝑌 ∈ ((Base‘𝑈) ∖ { 0 }) ↔ (𝑌 ∈ (Base‘𝑈) ∧ 𝑌0 ))
2522, 23, 24sylanbrc 583 . . . 4 (𝜑𝑌 ∈ ((Base‘𝑈) ∖ { 0 }))
26 lcfrlem38.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
273, 7, 4, 8, 9, 1, 10, 2, 5, 20, 25, 26lcfrlem21 41540 . . 3 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ (LSAtoms‘𝑈))
281, 2, 6, 27lsateln0 38971 . 2 (𝜑 → ∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))𝑖0 )
29 lcfrlem38.f . . . 4 𝐹 = (LFnl‘𝑈)
30 lcfrlem38.c . . . 4 𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
3153ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝐾 ∈ HL ∧ 𝑊𝐻))
32153ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝐺𝑄)
33 lcfrlem38.gs . . . . 5 (𝜑𝐺𝐶)
34333ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝐺𝐶)
35163ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑋𝐸)
36213ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑌𝐸)
37183ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑋0 )
38233ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑌0 )
39263ad2ant1 1133 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
40 eqid 2734 . . . 4 ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
41 simp2 1137 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})))
42 simp3 1138 . . . 4 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → 𝑖0 )
433, 7, 4, 9, 29, 11, 12, 13, 30, 14, 31, 32, 34, 35, 36, 1, 37, 38, 10, 39, 40, 41, 42lcfrlem39 41558 . . 3 ((𝜑𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∧ 𝑖0 ) → (𝑋 + 𝑌) ∈ 𝐸)
4443rexlimdv3a 3146 . 2 (𝜑 → (∃𝑖 ∈ ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))𝑖0 → (𝑋 + 𝑌) ∈ 𝐸))
4528, 44mpd 15 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  cdif 3928  cin 3930  wss 3931  {csn 4606  {cpr 4608   ciun 4971  cfv 6541  (class class class)co 7413  Basecbs 17230  +gcplusg 17274  0gc0g 17456  LSubSpclss 20898  LSpanclspn 20938  LSAtomsclsa 38950  LFnlclfn 39033  LKerclk 39061  LDualcld 39099  HLchlt 39326  LHypclh 39961  DVecHcdvh 41055  ocHcoch 41324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-riotaBAD 38929
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-undef 8280  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-0g 17458  df-mre 17601  df-mrc 17602  df-acs 17604  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-oppg 19334  df-lsm 19623  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-dvr 20370  df-nzr 20482  df-rlreg 20663  df-domn 20664  df-drng 20700  df-lmod 20829  df-lss 20899  df-lsp 20939  df-lvec 21071  df-lsatoms 38952  df-lshyp 38953  df-lcv 38995  df-lfl 39034  df-lkr 39062  df-ldual 39100  df-oposet 39152  df-ol 39154  df-oml 39155  df-covers 39242  df-ats 39243  df-atl 39274  df-cvlat 39298  df-hlat 39327  df-llines 39475  df-lplanes 39476  df-lvols 39477  df-lines 39478  df-psubsp 39480  df-pmap 39481  df-padd 39773  df-lhyp 39965  df-laut 39966  df-ldil 40081  df-ltrn 40082  df-trl 40136  df-tgrp 40720  df-tendo 40732  df-edring 40734  df-dveca 40980  df-disoa 41006  df-dvech 41056  df-dib 41116  df-dic 41150  df-dih 41206  df-doch 41325  df-djh 41372
This theorem is referenced by:  lcfrlem41  41560
  Copyright terms: Public domain W3C validator