| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrncoval | Structured version Visualization version GIF version | ||
| Description: Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.) |
| Ref | Expression |
|---|---|
| ltrnel.l | ⊢ ≤ = (le‘𝐾) |
| ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrncoval | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1137 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | simp2r 1201 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → 𝐺 ∈ 𝑇) | |
| 3 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | ltrnel.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | ltrnel.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | 3, 4, 5 | ltrn1o 40126 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 7 | 1, 2, 6 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 8 | f1of 6848 | . . 3 ⊢ (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾)) |
| 10 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | 3, 10 | atbase 39290 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 12 | 11 | 3ad2ant3 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ (Base‘𝐾)) |
| 13 | fvco3 7008 | . 2 ⊢ ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) | |
| 14 | 9, 12, 13 | syl2anc 584 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑃 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑃) = (𝐹‘(𝐺‘𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∘ ccom 5689 ⟶wf 6557 –1-1-onto→wf1o 6560 ‘cfv 6561 Basecbs 17247 lecple 17304 Atomscatm 39264 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-ats 39268 df-laut 39991 df-ldil 40106 df-ltrn 40107 |
| This theorem is referenced by: cdlemg41 40720 trlcoabs 40723 trlcoabs2N 40724 trlcolem 40728 cdlemg44 40735 cdlemi2 40821 cdlemk2 40834 cdlemk4 40836 cdlemk8 40840 dia2dimlem4 41069 dihjatcclem3 41422 |
| Copyright terms: Public domain | W3C validator |