Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoval Structured version   Visualization version   GIF version

Theorem ltrncoval 38086
Description: Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoval (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))

Proof of Theorem ltrncoval
StepHypRef Expression
1 simp1 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐺𝑇)
3 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 ltrnel.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 ltrnel.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 38065 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
71, 2, 6syl2anc 583 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
8 f1of 6700 . . 3 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
97, 8syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
10 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
113, 10atbase 37230 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
12113ad2ant3 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝑃 ∈ (Base‘𝐾))
13 fvco3 6849 . 2 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
149, 12, 13syl2anc 583 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  ccom 5584  wf 6414  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  lecple 16895  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ats 37208  df-laut 37930  df-ldil 38045  df-ltrn 38046
This theorem is referenced by:  cdlemg41  38659  trlcoabs  38662  trlcoabs2N  38663  trlcolem  38667  cdlemg44  38674  cdlemi2  38760  cdlemk2  38773  cdlemk4  38775  cdlemk8  38779  dia2dimlem4  39008  dihjatcclem3  39361
  Copyright terms: Public domain W3C validator