Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoval Structured version   Visualization version   GIF version

Theorem ltrncoval 40127
Description: Two ways to express value of translation composition. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoval (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))

Proof of Theorem ltrncoval
StepHypRef Expression
1 simp1 1135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2r 1199 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐺𝑇)
3 eqid 2734 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
4 ltrnel.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 ltrnel.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
63, 4, 5ltrn1o 40106 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
71, 2, 6syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
8 f1of 6848 . . 3 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
97, 8syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
10 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
113, 10atbase 39270 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
12113ad2ant3 1134 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝑃 ∈ (Base‘𝐾))
13 fvco3 7007 . 2 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
149, 12, 13syl2anc 584 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → ((𝐹𝐺)‘𝑃) = (𝐹‘(𝐺𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  ccom 5692  wf 6558  1-1-ontowf1o 6561  cfv 6562  Basecbs 17244  lecple 17304  Atomscatm 39244  HLchlt 39331  LHypclh 39966  LTrncltrn 40083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-map 8866  df-ats 39248  df-laut 39971  df-ldil 40086  df-ltrn 40087
This theorem is referenced by:  cdlemg41  40700  trlcoabs  40703  trlcoabs2N  40704  trlcolem  40708  cdlemg44  40715  cdlemi2  40801  cdlemk2  40814  cdlemk4  40816  cdlemk8  40820  dia2dimlem4  41049  dihjatcclem3  41402
  Copyright terms: Public domain W3C validator