Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjatcclem3 | Structured version Visualization version GIF version |
Description: Lemma for dihjatcc 39173. (Contributed by NM, 28-Sep-2014.) |
Ref | Expression |
---|---|
dihjatcclem.b | ⊢ 𝐵 = (Base‘𝐾) |
dihjatcclem.l | ⊢ ≤ = (le‘𝐾) |
dihjatcclem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjatcclem.j | ⊢ ∨ = (join‘𝐾) |
dihjatcclem.m | ⊢ ∧ = (meet‘𝐾) |
dihjatcclem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihjatcclem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjatcclem.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihjatcclem.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihjatcclem.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
dihjatcclem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihjatcclem.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
dihjatcclem.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
dihjatcc.w | ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) |
dihjatcc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihjatcc.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dihjatcc.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihjatcc.g | ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) |
dihjatcc.dd | ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) |
Ref | Expression |
---|---|
dihjatcclem3 | ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatcclem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dihjatcclem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | dihjatcclem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | dihjatcclem.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihjatcc.w | . . . . . . 7 ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | lhpocnel2 37770 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
8 | dihjatcclem.p | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
9 | dihjatcc.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | dihjatcc.g | . . . . . 6 ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) | |
11 | 2, 3, 4, 9, 10 | ltrniotacl 38330 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
12 | 1, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑇) |
13 | dihjatcclem.q | . . . . . 6 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
14 | dihjatcc.dd | . . . . . . 7 ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) | |
15 | 2, 3, 4, 9, 14 | ltrniotacl 38330 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐷 ∈ 𝑇) |
16 | 1, 7, 13, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑇) |
17 | 4, 9 | ltrncnv 37897 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇) → ◡𝐷 ∈ 𝑇) |
18 | 1, 16, 17 | syl2anc 587 | . . . 4 ⊢ (𝜑 → ◡𝐷 ∈ 𝑇) |
19 | 4, 9 | ltrnco 38470 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
20 | 1, 12, 18, 19 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
21 | dihjatcclem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
22 | dihjatcclem.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
23 | dihjatcc.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
24 | 2, 21, 22, 3, 4, 9, 23 | trlval2 37914 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐷) ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
25 | 1, 20, 13, 24 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
26 | 13 | simpld 498 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
27 | 2, 3, 4, 9 | ltrncoval 37896 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) ∧ 𝑄 ∈ 𝐴) → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
28 | 1, 12, 18, 26, 27 | syl121anc 1377 | . . . . . . 7 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
29 | 2, 3, 4, 9, 14 | ltrniotacnvval 38333 | . . . . . . . . . 10 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (◡𝐷‘𝑄) = 𝐶) |
30 | 1, 7, 13, 29 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (◡𝐷‘𝑄) = 𝐶) |
31 | 30 | fveq2d 6721 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = (𝐺‘𝐶)) |
32 | 2, 3, 4, 9, 10 | ltrniotaval 38332 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺‘𝐶) = 𝑃) |
33 | 1, 7, 8, 32 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝐶) = 𝑃) |
34 | 31, 33 | eqtrd 2777 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = 𝑃) |
35 | 28, 34 | eqtrd 2777 | . . . . . 6 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = 𝑃) |
36 | 35 | oveq2d 7229 | . . . . 5 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑄 ∨ 𝑃)) |
37 | 1 | simpld 498 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
38 | 8 | simpld 498 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
39 | 21, 3 | hlatjcom 37119 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
40 | 37, 38, 26, 39 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
41 | 36, 40 | eqtr4d 2780 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑃 ∨ 𝑄)) |
42 | 41 | oveq1d 7228 | . . 3 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
43 | dihjatcclem.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
44 | 42, 43 | eqtr4di 2796 | . 2 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = 𝑉) |
45 | 25, 44 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ◡ccnv 5550 ∘ ccom 5555 ‘cfv 6380 ℩crio 7169 (class class class)co 7213 Basecbs 16760 lecple 16809 occoc 16810 joincjn 17818 meetcmee 17819 LSSumclsm 19023 Atomscatm 37014 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 trLctrl 37909 TEndoctendo 38503 DVecHcdvh 38829 DIsoHcdih 38979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-undef 8015 df-map 8510 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 |
This theorem is referenced by: dihjatcclem4 39172 |
Copyright terms: Public domain | W3C validator |