Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjatcclem3 Structured version   Visualization version   GIF version

Theorem dihjatcclem3 41421
Description: Lemma for dihjatcc 41423. (Contributed by NM, 28-Sep-2014.)
Hypotheses
Ref Expression
dihjatcclem.b 𝐵 = (Base‘𝐾)
dihjatcclem.l = (le‘𝐾)
dihjatcclem.h 𝐻 = (LHyp‘𝐾)
dihjatcclem.j = (join‘𝐾)
dihjatcclem.m = (meet‘𝐾)
dihjatcclem.a 𝐴 = (Atoms‘𝐾)
dihjatcclem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjatcclem.s = (LSSum‘𝑈)
dihjatcclem.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihjatcclem.v 𝑉 = ((𝑃 𝑄) 𝑊)
dihjatcclem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihjatcclem.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dihjatcclem.q (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
dihjatcc.w 𝐶 = ((oc‘𝐾)‘𝑊)
dihjatcc.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihjatcc.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihjatcc.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihjatcc.g 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
dihjatcc.dd 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
Assertion
Ref Expression
dihjatcclem3 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
Distinct variable groups:   ,𝑑   𝐴,𝑑   𝐵,𝑑   𝐶,𝑑   𝐻,𝑑   𝑃,𝑑   𝐾,𝑑   𝑄,𝑑   𝑇,𝑑   𝑊,𝑑
Allowed substitution hints:   𝜑(𝑑)   𝐷(𝑑)   (𝑑)   𝑅(𝑑)   𝑈(𝑑)   𝐸(𝑑)   𝐺(𝑑)   𝐼(𝑑)   (𝑑)   (𝑑)   𝑉(𝑑)

Proof of Theorem dihjatcclem3
StepHypRef Expression
1 dihjatcclem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihjatcclem.l . . . . . . 7 = (le‘𝐾)
3 dihjatcclem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 dihjatcclem.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 dihjatcc.w . . . . . . 7 𝐶 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 40020 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
71, 6syl 17 . . . . 5 (𝜑 → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
8 dihjatcclem.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 dihjatcc.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 dihjatcc.g . . . . . 6 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
112, 3, 4, 9, 10ltrniotacl 40580 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
121, 7, 8, 11syl3anc 1373 . . . 4 (𝜑𝐺𝑇)
13 dihjatcclem.q . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
14 dihjatcc.dd . . . . . . 7 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
152, 3, 4, 9, 14ltrniotacl 40580 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐷𝑇)
161, 7, 13, 15syl3anc 1373 . . . . 5 (𝜑𝐷𝑇)
174, 9ltrncnv 40147 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → 𝐷𝑇)
181, 16, 17syl2anc 584 . . . 4 (𝜑𝐷𝑇)
194, 9ltrnco 40720 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐷𝑇) → (𝐺𝐷) ∈ 𝑇)
201, 12, 18, 19syl3anc 1373 . . 3 (𝜑 → (𝐺𝐷) ∈ 𝑇)
21 dihjatcclem.j . . . 4 = (join‘𝐾)
22 dihjatcclem.m . . . 4 = (meet‘𝐾)
23 dihjatcc.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
242, 21, 22, 3, 4, 9, 23trlval2 40164 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐷) ∈ 𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅‘(𝐺𝐷)) = ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊))
251, 20, 13, 24syl3anc 1373 . 2 (𝜑 → (𝑅‘(𝐺𝐷)) = ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊))
2613simpld 494 . . . . . . . 8 (𝜑𝑄𝐴)
272, 3, 4, 9ltrncoval 40146 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐷𝑇) ∧ 𝑄𝐴) → ((𝐺𝐷)‘𝑄) = (𝐺‘(𝐷𝑄)))
281, 12, 18, 26, 27syl121anc 1377 . . . . . . 7 (𝜑 → ((𝐺𝐷)‘𝑄) = (𝐺‘(𝐷𝑄)))
292, 3, 4, 9, 14ltrniotacnvval 40583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐷𝑄) = 𝐶)
301, 7, 13, 29syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐷𝑄) = 𝐶)
3130fveq2d 6865 . . . . . . . 8 (𝜑 → (𝐺‘(𝐷𝑄)) = (𝐺𝐶))
322, 3, 4, 9, 10ltrniotaval 40582 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐶) = 𝑃)
331, 7, 8, 32syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐺𝐶) = 𝑃)
3431, 33eqtrd 2765 . . . . . . 7 (𝜑 → (𝐺‘(𝐷𝑄)) = 𝑃)
3528, 34eqtrd 2765 . . . . . 6 (𝜑 → ((𝐺𝐷)‘𝑄) = 𝑃)
3635oveq2d 7406 . . . . 5 (𝜑 → (𝑄 ((𝐺𝐷)‘𝑄)) = (𝑄 𝑃))
371simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
388simpld 494 . . . . . 6 (𝜑𝑃𝐴)
3921, 3hlatjcom 39368 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
4037, 38, 26, 39syl3anc 1373 . . . . 5 (𝜑 → (𝑃 𝑄) = (𝑄 𝑃))
4136, 40eqtr4d 2768 . . . 4 (𝜑 → (𝑄 ((𝐺𝐷)‘𝑄)) = (𝑃 𝑄))
4241oveq1d 7405 . . 3 (𝜑 → ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊) = ((𝑃 𝑄) 𝑊))
43 dihjatcclem.v . . 3 𝑉 = ((𝑃 𝑄) 𝑊)
4442, 43eqtr4di 2783 . 2 (𝜑 → ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊) = 𝑉)
4525, 44eqtrd 2765 1 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  ccnv 5640  ccom 5645  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  lecple 17234  occoc 17235  joincjn 18279  meetcmee 18280  LSSumclsm 19571  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  trLctrl 40159  TEndoctendo 40753  DVecHcdvh 41079  DIsoHcdih 41229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-map 8804  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160
This theorem is referenced by:  dihjatcclem4  41422
  Copyright terms: Public domain W3C validator