| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjatcclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dihjatcc 41423. (Contributed by NM, 28-Sep-2014.) |
| Ref | Expression |
|---|---|
| dihjatcclem.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihjatcclem.l | ⊢ ≤ = (le‘𝐾) |
| dihjatcclem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihjatcclem.j | ⊢ ∨ = (join‘𝐾) |
| dihjatcclem.m | ⊢ ∧ = (meet‘𝐾) |
| dihjatcclem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihjatcclem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihjatcclem.s | ⊢ ⊕ = (LSSum‘𝑈) |
| dihjatcclem.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihjatcclem.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| dihjatcclem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dihjatcclem.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| dihjatcclem.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| dihjatcc.w | ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) |
| dihjatcc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihjatcc.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dihjatcc.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dihjatcc.g | ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) |
| dihjatcc.dd | ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) |
| Ref | Expression |
|---|---|
| dihjatcclem3 | ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihjatcclem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | dihjatcclem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | dihjatcclem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | dihjatcclem.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dihjatcc.w | . . . . . . 7 ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) | |
| 6 | 2, 3, 4, 5 | lhpocnel2 40020 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
| 8 | dihjatcclem.p | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 9 | dihjatcc.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | dihjatcc.g | . . . . . 6 ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) | |
| 11 | 2, 3, 4, 9, 10 | ltrniotacl 40580 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 12 | 1, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑇) |
| 13 | dihjatcclem.q | . . . . . 6 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 14 | dihjatcc.dd | . . . . . . 7 ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) | |
| 15 | 2, 3, 4, 9, 14 | ltrniotacl 40580 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐷 ∈ 𝑇) |
| 16 | 1, 7, 13, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑇) |
| 17 | 4, 9 | ltrncnv 40147 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇) → ◡𝐷 ∈ 𝑇) |
| 18 | 1, 16, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ◡𝐷 ∈ 𝑇) |
| 19 | 4, 9 | ltrnco 40720 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
| 20 | 1, 12, 18, 19 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
| 21 | dihjatcclem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 22 | dihjatcclem.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 23 | dihjatcc.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 24 | 2, 21, 22, 3, 4, 9, 23 | trlval2 40164 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐷) ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
| 25 | 1, 20, 13, 24 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
| 26 | 13 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 27 | 2, 3, 4, 9 | ltrncoval 40146 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) ∧ 𝑄 ∈ 𝐴) → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
| 28 | 1, 12, 18, 26, 27 | syl121anc 1377 | . . . . . . 7 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
| 29 | 2, 3, 4, 9, 14 | ltrniotacnvval 40583 | . . . . . . . . . 10 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (◡𝐷‘𝑄) = 𝐶) |
| 30 | 1, 7, 13, 29 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (◡𝐷‘𝑄) = 𝐶) |
| 31 | 30 | fveq2d 6865 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = (𝐺‘𝐶)) |
| 32 | 2, 3, 4, 9, 10 | ltrniotaval 40582 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺‘𝐶) = 𝑃) |
| 33 | 1, 7, 8, 32 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝐶) = 𝑃) |
| 34 | 31, 33 | eqtrd 2765 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = 𝑃) |
| 35 | 28, 34 | eqtrd 2765 | . . . . . 6 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = 𝑃) |
| 36 | 35 | oveq2d 7406 | . . . . 5 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑄 ∨ 𝑃)) |
| 37 | 1 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 38 | 8 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 39 | 21, 3 | hlatjcom 39368 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 40 | 37, 38, 26, 39 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 41 | 36, 40 | eqtr4d 2768 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑃 ∨ 𝑄)) |
| 42 | 41 | oveq1d 7405 | . . 3 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| 43 | dihjatcclem.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 44 | 42, 43 | eqtr4di 2783 | . 2 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = 𝑉) |
| 45 | 25, 44 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ◡ccnv 5640 ∘ ccom 5645 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 lecple 17234 occoc 17235 joincjn 18279 meetcmee 18280 LSSumclsm 19571 Atomscatm 39263 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 trLctrl 40159 TEndoctendo 40753 DVecHcdvh 41079 DIsoHcdih 41229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-undef 8255 df-map 8804 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 |
| This theorem is referenced by: dihjatcclem4 41422 |
| Copyright terms: Public domain | W3C validator |