| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjatcclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for dihjatcc 41520. (Contributed by NM, 28-Sep-2014.) |
| Ref | Expression |
|---|---|
| dihjatcclem.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihjatcclem.l | ⊢ ≤ = (le‘𝐾) |
| dihjatcclem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihjatcclem.j | ⊢ ∨ = (join‘𝐾) |
| dihjatcclem.m | ⊢ ∧ = (meet‘𝐾) |
| dihjatcclem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihjatcclem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihjatcclem.s | ⊢ ⊕ = (LSSum‘𝑈) |
| dihjatcclem.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihjatcclem.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| dihjatcclem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| dihjatcclem.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| dihjatcclem.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| dihjatcc.w | ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) |
| dihjatcc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dihjatcc.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dihjatcc.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dihjatcc.g | ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) |
| dihjatcc.dd | ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) |
| Ref | Expression |
|---|---|
| dihjatcclem3 | ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihjatcclem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | dihjatcclem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | dihjatcclem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | dihjatcclem.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | dihjatcc.w | . . . . . . 7 ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) | |
| 6 | 2, 3, 4, 5 | lhpocnel2 40117 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
| 8 | dihjatcclem.p | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
| 9 | dihjatcc.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 10 | dihjatcc.g | . . . . . 6 ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) | |
| 11 | 2, 3, 4, 9, 10 | ltrniotacl 40677 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
| 12 | 1, 7, 8, 11 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑇) |
| 13 | dihjatcclem.q | . . . . . 6 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 14 | dihjatcc.dd | . . . . . . 7 ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) | |
| 15 | 2, 3, 4, 9, 14 | ltrniotacl 40677 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐷 ∈ 𝑇) |
| 16 | 1, 7, 13, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑇) |
| 17 | 4, 9 | ltrncnv 40244 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇) → ◡𝐷 ∈ 𝑇) |
| 18 | 1, 16, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ◡𝐷 ∈ 𝑇) |
| 19 | 4, 9 | ltrnco 40817 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
| 20 | 1, 12, 18, 19 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
| 21 | dihjatcclem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 22 | dihjatcclem.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 23 | dihjatcc.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 24 | 2, 21, 22, 3, 4, 9, 23 | trlval2 40261 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐷) ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
| 25 | 1, 20, 13, 24 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
| 26 | 13 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 27 | 2, 3, 4, 9 | ltrncoval 40243 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) ∧ 𝑄 ∈ 𝐴) → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
| 28 | 1, 12, 18, 26, 27 | syl121anc 1377 | . . . . . . 7 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
| 29 | 2, 3, 4, 9, 14 | ltrniotacnvval 40680 | . . . . . . . . . 10 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (◡𝐷‘𝑄) = 𝐶) |
| 30 | 1, 7, 13, 29 | syl3anc 1373 | . . . . . . . . 9 ⊢ (𝜑 → (◡𝐷‘𝑄) = 𝐶) |
| 31 | 30 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = (𝐺‘𝐶)) |
| 32 | 2, 3, 4, 9, 10 | ltrniotaval 40679 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺‘𝐶) = 𝑃) |
| 33 | 1, 7, 8, 32 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝐶) = 𝑃) |
| 34 | 31, 33 | eqtrd 2766 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = 𝑃) |
| 35 | 28, 34 | eqtrd 2766 | . . . . . 6 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = 𝑃) |
| 36 | 35 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑄 ∨ 𝑃)) |
| 37 | 1 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 38 | 8 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 39 | 21, 3 | hlatjcom 39466 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 40 | 37, 38, 26, 39 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
| 41 | 36, 40 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑃 ∨ 𝑄)) |
| 42 | 41 | oveq1d 7361 | . . 3 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
| 43 | dihjatcclem.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 44 | 42, 43 | eqtr4di 2784 | . 2 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = 𝑉) |
| 45 | 25, 44 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ◡ccnv 5613 ∘ ccom 5618 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 occoc 17169 joincjn 18217 meetcmee 18218 LSSumclsm 19546 Atomscatm 39361 HLchlt 39448 LHypclh 40082 LTrncltrn 40199 trLctrl 40256 TEndoctendo 40850 DVecHcdvh 41176 DIsoHcdih 41326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39051 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39274 df-ol 39276 df-oml 39277 df-covers 39364 df-ats 39365 df-atl 39396 df-cvlat 39420 df-hlat 39449 df-llines 39596 df-lplanes 39597 df-lvols 39598 df-lines 39599 df-psubsp 39601 df-pmap 39602 df-padd 39894 df-lhyp 40086 df-laut 40087 df-ldil 40202 df-ltrn 40203 df-trl 40257 |
| This theorem is referenced by: dihjatcclem4 41519 |
| Copyright terms: Public domain | W3C validator |