![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihjatcclem3 | Structured version Visualization version GIF version |
Description: Lemma for dihjatcc 38009. (Contributed by NM, 28-Sep-2014.) |
Ref | Expression |
---|---|
dihjatcclem.b | ⊢ 𝐵 = (Base‘𝐾) |
dihjatcclem.l | ⊢ ≤ = (le‘𝐾) |
dihjatcclem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihjatcclem.j | ⊢ ∨ = (join‘𝐾) |
dihjatcclem.m | ⊢ ∧ = (meet‘𝐾) |
dihjatcclem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihjatcclem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihjatcclem.s | ⊢ ⊕ = (LSSum‘𝑈) |
dihjatcclem.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihjatcclem.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
dihjatcclem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dihjatcclem.p | ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
dihjatcclem.q | ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
dihjatcc.w | ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) |
dihjatcc.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dihjatcc.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dihjatcc.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dihjatcc.g | ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) |
dihjatcc.dd | ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) |
Ref | Expression |
---|---|
dihjatcclem3 | ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihjatcclem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | dihjatcclem.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | dihjatcclem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | dihjatcclem.h | . . . . . . 7 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | dihjatcc.w | . . . . . . 7 ⊢ 𝐶 = ((oc‘𝐾)‘𝑊) | |
6 | 2, 3, 4, 5 | lhpocnel2 36606 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊)) |
8 | dihjatcclem.p | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | |
9 | dihjatcc.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | dihjatcc.g | . . . . . 6 ⊢ 𝐺 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑃) | |
11 | 2, 3, 4, 9, 10 | ltrniotacl 37166 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐺 ∈ 𝑇) |
12 | 1, 7, 8, 11 | syl3anc 1351 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑇) |
13 | dihjatcclem.q | . . . . . 6 ⊢ (𝜑 → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
14 | dihjatcc.dd | . . . . . . 7 ⊢ 𝐷 = (℩𝑑 ∈ 𝑇 (𝑑‘𝐶) = 𝑄) | |
15 | 2, 3, 4, 9, 14 | ltrniotacl 37166 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐷 ∈ 𝑇) |
16 | 1, 7, 13, 15 | syl3anc 1351 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑇) |
17 | 4, 9 | ltrncnv 36733 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐷 ∈ 𝑇) → ◡𝐷 ∈ 𝑇) |
18 | 1, 16, 17 | syl2anc 576 | . . . 4 ⊢ (𝜑 → ◡𝐷 ∈ 𝑇) |
19 | 4, 9 | ltrnco 37306 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
20 | 1, 12, 18, 19 | syl3anc 1351 | . . 3 ⊢ (𝜑 → (𝐺 ∘ ◡𝐷) ∈ 𝑇) |
21 | dihjatcclem.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
22 | dihjatcclem.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
23 | dihjatcc.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
24 | 2, 21, 22, 3, 4, 9, 23 | trlval2 36750 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∘ ◡𝐷) ∈ 𝑇 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
25 | 1, 20, 13, 24 | syl3anc 1351 | . 2 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊)) |
26 | 13 | simpld 487 | . . . . . . . 8 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
27 | 2, 3, 4, 9 | ltrncoval 36732 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐺 ∈ 𝑇 ∧ ◡𝐷 ∈ 𝑇) ∧ 𝑄 ∈ 𝐴) → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
28 | 1, 12, 18, 26, 27 | syl121anc 1355 | . . . . . . 7 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = (𝐺‘(◡𝐷‘𝑄))) |
29 | 2, 3, 4, 9, 14 | ltrniotacnvval 37169 | . . . . . . . . . 10 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (◡𝐷‘𝑄) = 𝐶) |
30 | 1, 7, 13, 29 | syl3anc 1351 | . . . . . . . . 9 ⊢ (𝜑 → (◡𝐷‘𝑄) = 𝐶) |
31 | 30 | fveq2d 6503 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = (𝐺‘𝐶)) |
32 | 2, 3, 4, 9, 10 | ltrniotaval 37168 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝐺‘𝐶) = 𝑃) |
33 | 1, 7, 8, 32 | syl3anc 1351 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝐶) = 𝑃) |
34 | 31, 33 | eqtrd 2814 | . . . . . . 7 ⊢ (𝜑 → (𝐺‘(◡𝐷‘𝑄)) = 𝑃) |
35 | 28, 34 | eqtrd 2814 | . . . . . 6 ⊢ (𝜑 → ((𝐺 ∘ ◡𝐷)‘𝑄) = 𝑃) |
36 | 35 | oveq2d 6992 | . . . . 5 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑄 ∨ 𝑃)) |
37 | 1 | simpld 487 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
38 | 8 | simpld 487 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
39 | 21, 3 | hlatjcom 35955 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
40 | 37, 38, 26, 39 | syl3anc 1351 | . . . . 5 ⊢ (𝜑 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
41 | 36, 40 | eqtr4d 2817 | . . . 4 ⊢ (𝜑 → (𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) = (𝑃 ∨ 𝑄)) |
42 | 41 | oveq1d 6991 | . . 3 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
43 | dihjatcclem.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
44 | 42, 43 | syl6eqr 2832 | . 2 ⊢ (𝜑 → ((𝑄 ∨ ((𝐺 ∘ ◡𝐷)‘𝑄)) ∧ 𝑊) = 𝑉) |
45 | 25, 44 | eqtrd 2814 | 1 ⊢ (𝜑 → (𝑅‘(𝐺 ∘ ◡𝐷)) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ◡ccnv 5406 ∘ ccom 5411 ‘cfv 6188 ℩crio 6936 (class class class)co 6976 Basecbs 16339 lecple 16428 occoc 16429 joincjn 17412 meetcmee 17413 LSSumclsm 18520 Atomscatm 35850 HLchlt 35937 LHypclh 36571 LTrncltrn 36688 trLctrl 36745 TEndoctendo 37339 DVecHcdvh 37665 DIsoHcdih 37815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-riotaBAD 35540 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-undef 7742 df-map 8208 df-proset 17396 df-poset 17414 df-plt 17426 df-lub 17442 df-glb 17443 df-join 17444 df-meet 17445 df-p0 17507 df-p1 17508 df-lat 17514 df-clat 17576 df-oposet 35763 df-ol 35765 df-oml 35766 df-covers 35853 df-ats 35854 df-atl 35885 df-cvlat 35909 df-hlat 35938 df-llines 36085 df-lplanes 36086 df-lvols 36087 df-lines 36088 df-psubsp 36090 df-pmap 36091 df-padd 36383 df-lhyp 36575 df-laut 36576 df-ldil 36691 df-ltrn 36692 df-trl 36746 |
This theorem is referenced by: dihjatcclem4 38008 |
Copyright terms: Public domain | W3C validator |