Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihjatcclem3 Structured version   Visualization version   GIF version

Theorem dihjatcclem3 41518
Description: Lemma for dihjatcc 41520. (Contributed by NM, 28-Sep-2014.)
Hypotheses
Ref Expression
dihjatcclem.b 𝐵 = (Base‘𝐾)
dihjatcclem.l = (le‘𝐾)
dihjatcclem.h 𝐻 = (LHyp‘𝐾)
dihjatcclem.j = (join‘𝐾)
dihjatcclem.m = (meet‘𝐾)
dihjatcclem.a 𝐴 = (Atoms‘𝐾)
dihjatcclem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihjatcclem.s = (LSSum‘𝑈)
dihjatcclem.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihjatcclem.v 𝑉 = ((𝑃 𝑄) 𝑊)
dihjatcclem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dihjatcclem.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dihjatcclem.q (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
dihjatcc.w 𝐶 = ((oc‘𝐾)‘𝑊)
dihjatcc.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dihjatcc.r 𝑅 = ((trL‘𝐾)‘𝑊)
dihjatcc.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dihjatcc.g 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
dihjatcc.dd 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
Assertion
Ref Expression
dihjatcclem3 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
Distinct variable groups:   ,𝑑   𝐴,𝑑   𝐵,𝑑   𝐶,𝑑   𝐻,𝑑   𝑃,𝑑   𝐾,𝑑   𝑄,𝑑   𝑇,𝑑   𝑊,𝑑
Allowed substitution hints:   𝜑(𝑑)   𝐷(𝑑)   (𝑑)   𝑅(𝑑)   𝑈(𝑑)   𝐸(𝑑)   𝐺(𝑑)   𝐼(𝑑)   (𝑑)   (𝑑)   𝑉(𝑑)

Proof of Theorem dihjatcclem3
StepHypRef Expression
1 dihjatcclem.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 dihjatcclem.l . . . . . . 7 = (le‘𝐾)
3 dihjatcclem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 dihjatcclem.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
5 dihjatcc.w . . . . . . 7 𝐶 = ((oc‘𝐾)‘𝑊)
62, 3, 4, 5lhpocnel2 40117 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
71, 6syl 17 . . . . 5 (𝜑 → (𝐶𝐴 ∧ ¬ 𝐶 𝑊))
8 dihjatcclem.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
9 dihjatcc.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
10 dihjatcc.g . . . . . 6 𝐺 = (𝑑𝑇 (𝑑𝐶) = 𝑃)
112, 3, 4, 9, 10ltrniotacl 40677 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐺𝑇)
121, 7, 8, 11syl3anc 1373 . . . 4 (𝜑𝐺𝑇)
13 dihjatcclem.q . . . . . 6 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
14 dihjatcc.dd . . . . . . 7 𝐷 = (𝑑𝑇 (𝑑𝐶) = 𝑄)
152, 3, 4, 9, 14ltrniotacl 40677 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐷𝑇)
161, 7, 13, 15syl3anc 1373 . . . . 5 (𝜑𝐷𝑇)
174, 9ltrncnv 40244 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇) → 𝐷𝑇)
181, 16, 17syl2anc 584 . . . 4 (𝜑𝐷𝑇)
194, 9ltrnco 40817 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐷𝑇) → (𝐺𝐷) ∈ 𝑇)
201, 12, 18, 19syl3anc 1373 . . 3 (𝜑 → (𝐺𝐷) ∈ 𝑇)
21 dihjatcclem.j . . . 4 = (join‘𝐾)
22 dihjatcclem.m . . . 4 = (meet‘𝐾)
23 dihjatcc.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
242, 21, 22, 3, 4, 9, 23trlval2 40261 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝐷) ∈ 𝑇 ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑅‘(𝐺𝐷)) = ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊))
251, 20, 13, 24syl3anc 1373 . 2 (𝜑 → (𝑅‘(𝐺𝐷)) = ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊))
2613simpld 494 . . . . . . . 8 (𝜑𝑄𝐴)
272, 3, 4, 9ltrncoval 40243 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐷𝑇) ∧ 𝑄𝐴) → ((𝐺𝐷)‘𝑄) = (𝐺‘(𝐷𝑄)))
281, 12, 18, 26, 27syl121anc 1377 . . . . . . 7 (𝜑 → ((𝐺𝐷)‘𝑄) = (𝐺‘(𝐷𝑄)))
292, 3, 4, 9, 14ltrniotacnvval 40680 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐷𝑄) = 𝐶)
301, 7, 13, 29syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝐷𝑄) = 𝐶)
3130fveq2d 6826 . . . . . . . 8 (𝜑 → (𝐺‘(𝐷𝑄)) = (𝐺𝐶))
322, 3, 4, 9, 10ltrniotaval 40679 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐶𝐴 ∧ ¬ 𝐶 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐺𝐶) = 𝑃)
331, 7, 8, 32syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐺𝐶) = 𝑃)
3431, 33eqtrd 2766 . . . . . . 7 (𝜑 → (𝐺‘(𝐷𝑄)) = 𝑃)
3528, 34eqtrd 2766 . . . . . 6 (𝜑 → ((𝐺𝐷)‘𝑄) = 𝑃)
3635oveq2d 7362 . . . . 5 (𝜑 → (𝑄 ((𝐺𝐷)‘𝑄)) = (𝑄 𝑃))
371simpld 494 . . . . . 6 (𝜑𝐾 ∈ HL)
388simpld 494 . . . . . 6 (𝜑𝑃𝐴)
3921, 3hlatjcom 39466 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
4037, 38, 26, 39syl3anc 1373 . . . . 5 (𝜑 → (𝑃 𝑄) = (𝑄 𝑃))
4136, 40eqtr4d 2769 . . . 4 (𝜑 → (𝑄 ((𝐺𝐷)‘𝑄)) = (𝑃 𝑄))
4241oveq1d 7361 . . 3 (𝜑 → ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊) = ((𝑃 𝑄) 𝑊))
43 dihjatcclem.v . . 3 𝑉 = ((𝑃 𝑄) 𝑊)
4442, 43eqtr4di 2784 . 2 (𝜑 → ((𝑄 ((𝐺𝐷)‘𝑄)) 𝑊) = 𝑉)
4525, 44eqtrd 2766 1 (𝜑 → (𝑅‘(𝐺𝐷)) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  ccnv 5613  ccom 5618  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  occoc 17169  joincjn 18217  meetcmee 18218  LSSumclsm 19546  Atomscatm 39361  HLchlt 39448  LHypclh 40082  LTrncltrn 40199  trLctrl 40256  TEndoctendo 40850  DVecHcdvh 41176  DIsoHcdih 41326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39051
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-lvols 39598  df-lines 39599  df-psubsp 39601  df-pmap 39602  df-padd 39894  df-lhyp 40086  df-laut 40087  df-ldil 40202  df-ltrn 40203  df-trl 40257
This theorem is referenced by:  dihjatcclem4  41519
  Copyright terms: Public domain W3C validator