MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mstri2 Structured version   Visualization version   GIF version

Theorem mstri2 24377
Description: Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x 𝑋 = (Base‘𝑀)
mscl.d 𝐷 = (dist‘𝑀)
Assertion
Ref Expression
mstri2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))

Proof of Theorem mstri2
StepHypRef Expression
1 mscl.x . . . 4 𝑋 = (Base‘𝑀)
2 mscl.d . . . 4 𝐷 = (dist‘𝑀)
31, 2msmet2 24370 . . 3 (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
4 mettri2 24251 . . 3 (((𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)))
53, 4sylan 580 . 2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)))
6 simpr2 1196 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
7 simpr3 1197 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
86, 7ovresd 7508 . 2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
9 simpr1 1195 . . . 4 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → 𝐶𝑋)
109, 6ovresd 7508 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) = (𝐶𝐷𝐴))
119, 7ovresd 7508 . . 3 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐶𝐷𝐵))
1210, 11oveq12d 7359 . 2 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → ((𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐴) + (𝐶(𝐷 ↾ (𝑋 × 𝑋))𝐵)) = ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
135, 8, 123brtr3d 5117 1 ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086   × cxp 5609  cres 5613  cfv 6476  (class class class)co 7341   + caddc 11004  cle 11142  Basecbs 17115  distcds 17165  Metcmet 21272  MetSpcms 24228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-xms 24230  df-ms 24231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator