![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexaddd | Structured version Visualization version GIF version |
Description: The extended real addition operation when both arguments are real. Deduction version of rexadd 13270. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rexaddd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rexaddd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rexaddd | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexaddd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rexaddd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | rexadd 13270 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℝcr 11151 + caddc 11155 +𝑒 cxad 13149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-i2m1 11220 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-xadd 13152 |
This theorem is referenced by: xpncan 13289 xleadd1a 13291 xadddilem 13332 ismet2 24358 mettri2 24366 prdsxmetlem 24393 bl2in 24425 xblss2ps 24426 methaus 24548 metustexhalf 24584 metdcnlem 24871 metnrmlem3 24896 iscau3 25325 vtxdfiun 29514 vtxdginducedm1fi 29576 infleinflem1 45319 infleinflem2 45320 limsupgtlem 45732 ismbl3 45941 meadjunre 46431 hspmbllem1 46581 hspmbllem2 46582 hspmbllem3 46583 ovolval5lem1 46607 |
Copyright terms: Public domain | W3C validator |