Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexaddd | Structured version Visualization version GIF version |
Description: The extended real addition operation when both arguments are real. Deduction version of rexadd 12895. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rexaddd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rexaddd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
rexaddd | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexaddd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rexaddd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | rexadd 12895 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 + caddc 10805 +𝑒 cxad 12775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-mulcl 10864 ax-i2m1 10870 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-xadd 12778 |
This theorem is referenced by: xpncan 12914 xleadd1a 12916 xadddilem 12957 ismet2 23394 mettri2 23402 prdsxmetlem 23429 bl2in 23461 xblss2ps 23462 methaus 23582 metustexhalf 23618 metdcnlem 23905 metnrmlem3 23930 iscau3 24347 vtxdfiun 27752 vtxdginducedm1fi 27814 infleinflem1 42799 infleinflem2 42800 limsupgtlem 43208 ismbl3 43417 meadjunre 43904 hspmbllem1 44054 hspmbllem2 44055 hspmbllem3 44056 ovolval5lem1 44080 |
Copyright terms: Public domain | W3C validator |