| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexaddd | Structured version Visualization version GIF version | ||
| Description: The extended real addition operation when both arguments are real. Deduction version of rexadd 13134. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| rexaddd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rexaddd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rexaddd | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexaddd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rexaddd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | rexadd 13134 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 + caddc 11012 +𝑒 cxad 13012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-i2m1 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-xadd 13015 |
| This theorem is referenced by: xpncan 13153 xleadd1a 13155 xadddilem 13196 ismet2 24219 mettri2 24227 prdsxmetlem 24254 bl2in 24286 xblss2ps 24287 methaus 24406 metustexhalf 24442 metdcnlem 24723 metnrmlem3 24748 iscau3 25176 vtxdfiun 29428 vtxdginducedm1fi 29490 infleinflem1 45353 infleinflem2 45354 limsupgtlem 45762 ismbl3 45971 meadjunre 46461 hspmbllem1 46611 hspmbllem2 46612 hspmbllem3 46613 ovolval5lem1 46637 |
| Copyright terms: Public domain | W3C validator |