MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexaddd Structured version   Visualization version   GIF version

Theorem rexaddd 13276
Description: The extended real addition operation when both arguments are real. Deduction version of rexadd 13274. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rexaddd.1 (𝜑𝐴 ∈ ℝ)
rexaddd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
rexaddd (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))

Proof of Theorem rexaddd
StepHypRef Expression
1 rexaddd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rexaddd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 rexadd 13274 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7431  cr 11154   + caddc 11158   +𝑒 cxad 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-mulcl 11217  ax-i2m1 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-xadd 13155
This theorem is referenced by:  xpncan  13293  xleadd1a  13295  xadddilem  13336  ismet2  24343  mettri2  24351  prdsxmetlem  24378  bl2in  24410  xblss2ps  24411  methaus  24533  metustexhalf  24569  metdcnlem  24858  metnrmlem3  24883  iscau3  25312  vtxdfiun  29500  vtxdginducedm1fi  29562  infleinflem1  45381  infleinflem2  45382  limsupgtlem  45792  ismbl3  46001  meadjunre  46491  hspmbllem1  46641  hspmbllem2  46642  hspmbllem3  46643  ovolval5lem1  46667
  Copyright terms: Public domain W3C validator