MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexaddd Structured version   Visualization version   GIF version

Theorem rexaddd 13159
Description: The extended real addition operation when both arguments are real. Deduction version of rexadd 13157. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rexaddd.1 (𝜑𝐴 ∈ ℝ)
rexaddd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
rexaddd (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))

Proof of Theorem rexaddd
StepHypRef Expression
1 rexaddd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 rexaddd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 rexadd 13157 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
41, 2, 3syl2anc 585 1 (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  (class class class)co 7358  cr 11055   + caddc 11059   +𝑒 cxad 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-mulcl 11118  ax-i2m1 11124
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-xadd 13039
This theorem is referenced by:  xpncan  13176  xleadd1a  13178  xadddilem  13219  ismet2  23702  mettri2  23710  prdsxmetlem  23737  bl2in  23769  xblss2ps  23770  methaus  23892  metustexhalf  23928  metdcnlem  24215  metnrmlem3  24240  iscau3  24658  vtxdfiun  28472  vtxdginducedm1fi  28534  infleinflem1  43691  infleinflem2  43692  limsupgtlem  44104  ismbl3  44313  meadjunre  44803  hspmbllem1  44953  hspmbllem2  44954  hspmbllem3  44955  ovolval5lem1  44979
  Copyright terms: Public domain W3C validator