| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexaddd | Structured version Visualization version GIF version | ||
| Description: The extended real addition operation when both arguments are real. Deduction version of rexadd 13168. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| rexaddd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| rexaddd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rexaddd | ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexaddd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | rexaddd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | rexadd 13168 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 + caddc 11047 +𝑒 cxad 13046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-xadd 13049 |
| This theorem is referenced by: xpncan 13187 xleadd1a 13189 xadddilem 13230 ismet2 24197 mettri2 24205 prdsxmetlem 24232 bl2in 24264 xblss2ps 24265 methaus 24384 metustexhalf 24420 metdcnlem 24701 metnrmlem3 24726 iscau3 25154 vtxdfiun 29386 vtxdginducedm1fi 29448 infleinflem1 45339 infleinflem2 45340 limsupgtlem 45748 ismbl3 45957 meadjunre 46447 hspmbllem1 46597 hspmbllem2 46598 hspmbllem3 46599 ovolval5lem1 46623 |
| Copyright terms: Public domain | W3C validator |