MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulhi Structured version   Visualization version   GIF version

Theorem coemulhi 25415
Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coemulhi.3 𝑀 = (deg‘𝐹)
coemulhi.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coemulhi ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))

Proof of Theorem coemulhi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 coemulhi.3 . . . . 5 𝑀 = (deg‘𝐹)
2 dgrcl 25394 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2eqeltrid 2843 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
4 coemulhi.4 . . . . 5 𝑁 = (deg‘𝐺)
5 dgrcl 25394 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
64, 5eqeltrid 2843 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
7 nn0addcl 12268 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
83, 6, 7syl2an 596 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℕ0)
9 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
10 coeadd.2 . . . 4 𝐵 = (coeff‘𝐺)
119, 10coemul 25413 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
128, 11mpd3an3 1461 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
136adantl 482 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
1413nn0ge0d 12296 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 0 ≤ 𝑁)
153adantr 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
1615nn0red 12294 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℝ)
1713nn0red 12294 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℝ)
1816, 17addge01d 11563 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
1914, 18mpbid 231 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ≤ (𝑀 + 𝑁))
20 nn0uz 12620 . . . . . . 7 0 = (ℤ‘0)
2115, 20eleqtrdi 2849 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (ℤ‘0))
228nn0zd 12424 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℤ)
23 elfz5 13248 . . . . . 6 ((𝑀 ∈ (ℤ‘0) ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2421, 22, 23syl2anc 584 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2519, 24mpbird 256 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (0...(𝑀 + 𝑁)))
2625snssd 4742 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → {𝑀} ⊆ (0...(𝑀 + 𝑁)))
27 elsni 4578 . . . . . 6 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
2827adantl 482 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → 𝑘 = 𝑀)
29 fveq2 6774 . . . . . 6 (𝑘 = 𝑀 → (𝐴𝑘) = (𝐴𝑀))
30 oveq2 7283 . . . . . . 7 (𝑘 = 𝑀 → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 + 𝑁) − 𝑀))
3130fveq2d 6778 . . . . . 6 (𝑘 = 𝑀 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = (𝐵‘((𝑀 + 𝑁) − 𝑀)))
3229, 31oveq12d 7293 . . . . 5 (𝑘 = 𝑀 → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3328, 32syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3416recnd 11003 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℂ)
3517recnd 11003 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℂ)
3634, 35pncan2d 11334 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3736fveq2d 6778 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵‘((𝑀 + 𝑁) − 𝑀)) = (𝐵𝑁))
3837oveq2d 7291 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) = ((𝐴𝑀) · (𝐵𝑁)))
399coef3 25393 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
4039adantr 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
4140, 15ffvelrnd 6962 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴𝑀) ∈ ℂ)
4210coef3 25393 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
4342adantl 482 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
4443, 13ffvelrnd 6962 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵𝑁) ∈ ℂ)
4541, 44mulcld 10995 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵𝑁)) ∈ ℂ)
4638, 45eqeltrd 2839 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4746adantr 481 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4833, 47eqeltrd 2839 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) ∈ ℂ)
49 simpl 483 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
50 eldifi 4061 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
51 elfznn0 13349 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0)
5250, 51syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ ℕ0)
539, 1dgrub 25395 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
54533expia 1120 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5549, 52, 54syl2an 596 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5655necon1bd 2961 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
5756imp 407 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐴𝑘) = 0)
5857oveq1d 7290 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
5943ad2antrr 723 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝐵:ℕ0⟶ℂ)
6050ad2antlr 724 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
61 fznn0sub 13288 . . . . . . . 8 (𝑘 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6260, 61syl 17 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6359, 62ffvelrnd 6962 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) ∈ ℂ)
6463mul02d 11173 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6558, 64eqtrd 2778 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6616adantr 481 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑀 ∈ ℝ)
6750adantl 482 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
6867, 51syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℕ0)
6968nn0red 12294 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℝ)
7017adantr 481 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑁 ∈ ℝ)
7166, 69, 70leadd1d 11569 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
728adantr 481 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℕ0)
7372nn0red 12294 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℝ)
7473, 69, 70lesubadd2d 11574 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
7571, 74bitr4d 281 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7675notbid 318 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑀𝑘 ↔ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7776biimpa 477 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
78 simpr 485 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7950, 61syl 17 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
8010, 4dgrub 25395 . . . . . . . . . . 11 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0 ∧ (𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0) → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
81803expia 1120 . . . . . . . . . 10 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8278, 79, 81syl2an 596 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8382necon1bd 2961 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0))
8483imp 407 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8577, 84syldan 591 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8685oveq2d 7291 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑘) · 0))
8740ad2antrr 723 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝐴:ℕ0⟶ℂ)
8852ad2antlr 724 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝑘 ∈ ℕ0)
8987, 88ffvelrnd 6962 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐴𝑘) ∈ ℂ)
9089mul01d 11174 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · 0) = 0)
9186, 90eqtrd 2778 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
92 eldifsni 4723 . . . . . . 7 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘𝑀)
9392adantl 482 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘𝑀)
9469, 66letri3d 11117 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘 = 𝑀 ↔ (𝑘𝑀𝑀𝑘)))
9594necon3abid 2980 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘𝑀 ↔ ¬ (𝑘𝑀𝑀𝑘)))
9693, 95mpbid 231 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ¬ (𝑘𝑀𝑀𝑘))
97 ianor 979 . . . . 5 (¬ (𝑘𝑀𝑀𝑘) ↔ (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9896, 97sylib 217 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9965, 91, 98mpjaodan 956 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
100 fzfid 13693 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0...(𝑀 + 𝑁)) ∈ Fin)
10126, 48, 99, 100fsumss 15437 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
10232sumsn 15458 . . . 4 ((𝑀 ∈ ℕ0 ∧ ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
10315, 46, 102syl2anc 584 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
104103, 38eqtrd 2778 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵𝑁)))
10512, 101, 1043eqtr2d 2784 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cdif 3884  {csn 4561   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cle 11010  cmin 11205  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  Σcsu 15397  Polycply 25345  coeffccoe 25347  degcdgr 25348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-coe 25351  df-dgr 25352
This theorem is referenced by:  dgrmul  25431  plymul0or  25441  plydivlem4  25456  vieta1lem2  25471
  Copyright terms: Public domain W3C validator