MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemulhi Structured version   Visualization version   GIF version

Theorem coemulhi 26293
Description: The leading coefficient of a product of polynomials. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
coefv0.1 𝐴 = (coeff‘𝐹)
coeadd.2 𝐵 = (coeff‘𝐺)
coemulhi.3 𝑀 = (deg‘𝐹)
coemulhi.4 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
coemulhi ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))

Proof of Theorem coemulhi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 coemulhi.3 . . . . 5 𝑀 = (deg‘𝐹)
2 dgrcl 26272 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
31, 2eqeltrid 2845 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
4 coemulhi.4 . . . . 5 𝑁 = (deg‘𝐺)
5 dgrcl 26272 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
64, 5eqeltrid 2845 . . . 4 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
7 nn0addcl 12561 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
83, 6, 7syl2an 596 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℕ0)
9 coefv0.1 . . . 4 𝐴 = (coeff‘𝐹)
10 coeadd.2 . . . 4 𝐵 = (coeff‘𝐺)
119, 10coemul 26291 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
128, 11mpd3an3 1464 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
136adantl 481 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℕ0)
1413nn0ge0d 12590 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 0 ≤ 𝑁)
153adantr 480 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℕ0)
1615nn0red 12588 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℝ)
1713nn0red 12588 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℝ)
1816, 17addge01d 11851 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0 ≤ 𝑁𝑀 ≤ (𝑀 + 𝑁)))
1914, 18mpbid 232 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ≤ (𝑀 + 𝑁))
20 nn0uz 12920 . . . . . . 7 0 = (ℤ‘0)
2115, 20eleqtrdi 2851 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (ℤ‘0))
228nn0zd 12639 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 + 𝑁) ∈ ℤ)
23 elfz5 13556 . . . . . 6 ((𝑀 ∈ (ℤ‘0) ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2421, 22, 23syl2anc 584 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝑀 ∈ (0...(𝑀 + 𝑁)) ↔ 𝑀 ≤ (𝑀 + 𝑁)))
2519, 24mpbird 257 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ (0...(𝑀 + 𝑁)))
2625snssd 4809 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → {𝑀} ⊆ (0...(𝑀 + 𝑁)))
27 elsni 4643 . . . . . 6 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
2827adantl 481 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → 𝑘 = 𝑀)
29 fveq2 6906 . . . . . 6 (𝑘 = 𝑀 → (𝐴𝑘) = (𝐴𝑀))
30 oveq2 7439 . . . . . . 7 (𝑘 = 𝑀 → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 + 𝑁) − 𝑀))
3130fveq2d 6910 . . . . . 6 (𝑘 = 𝑀 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = (𝐵‘((𝑀 + 𝑁) − 𝑀)))
3229, 31oveq12d 7449 . . . . 5 (𝑘 = 𝑀 → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3328, 32syl 17 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
3416recnd 11289 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑀 ∈ ℂ)
3517recnd 11289 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝑁 ∈ ℂ)
3634, 35pncan2d 11622 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3736fveq2d 6910 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵‘((𝑀 + 𝑁) − 𝑀)) = (𝐵𝑁))
3837oveq2d 7447 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) = ((𝐴𝑀) · (𝐵𝑁)))
399coef3 26271 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝐴:ℕ0⟶ℂ)
4039adantr 480 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐴:ℕ0⟶ℂ)
4140, 15ffvelcdmd 7105 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐴𝑀) ∈ ℂ)
4210coef3 26271 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → 𝐵:ℕ0⟶ℂ)
4342adantl 481 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐵:ℕ0⟶ℂ)
4443, 13ffvelcdmd 7105 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐵𝑁) ∈ ℂ)
4541, 44mulcld 11281 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵𝑁)) ∈ ℂ)
4638, 45eqeltrd 2841 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4746adantr 480 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ)
4833, 47eqeltrd 2841 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ {𝑀}) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) ∈ ℂ)
49 simpl 482 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
50 eldifi 4131 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
51 elfznn0 13660 . . . . . . . . . 10 (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0)
5250, 51syl 17 . . . . . . . . 9 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘 ∈ ℕ0)
539, 1dgrub 26273 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
54533expia 1122 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5549, 52, 54syl2an 596 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) ≠ 0 → 𝑘𝑀))
5655necon1bd 2958 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 → (𝐴𝑘) = 0))
5756imp 406 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐴𝑘) = 0)
5857oveq1d 7446 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
5943ad2antrr 726 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝐵:ℕ0⟶ℂ)
6050ad2antlr 727 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
61 fznn0sub 13596 . . . . . . . 8 (𝑘 ∈ (0...(𝑀 + 𝑁)) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6260, 61syl 17 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
6359, 62ffvelcdmd 7105 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) ∈ ℂ)
6463mul02d 11459 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → (0 · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6558, 64eqtrd 2777 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑘𝑀) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
6616adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑀 ∈ ℝ)
6750adantl 481 . . . . . . . . . . . . 13 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ (0...(𝑀 + 𝑁)))
6867, 51syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℕ0)
6968nn0red 12588 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘 ∈ ℝ)
7017adantr 480 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑁 ∈ ℝ)
7166, 69, 70leadd1d 11857 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
728adantr 480 . . . . . . . . . . . 12 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℕ0)
7372nn0red 12588 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀 + 𝑁) ∈ ℝ)
7473, 69, 70lesubadd2d 11862 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 ↔ (𝑀 + 𝑁) ≤ (𝑘 + 𝑁)))
7571, 74bitr4d 282 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑀𝑘 ↔ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7675notbid 318 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑀𝑘 ↔ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
7776biimpa 476 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
78 simpr 484 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → 𝐺 ∈ (Poly‘𝑆))
7950, 61syl 17 . . . . . . . . . 10 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0)
8010, 4dgrub 26273 . . . . . . . . . . 11 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0 ∧ (𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0) → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁)
81803expia 1122 . . . . . . . . . 10 ((𝐺 ∈ (Poly‘𝑆) ∧ ((𝑀 + 𝑁) − 𝑘) ∈ ℕ0) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8278, 79, 81syl2an 596 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐵‘((𝑀 + 𝑁) − 𝑘)) ≠ 0 → ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁))
8382necon1bd 2958 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁 → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0))
8483imp 406 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ ((𝑀 + 𝑁) − 𝑘) ≤ 𝑁) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8577, 84syldan 591 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐵‘((𝑀 + 𝑁) − 𝑘)) = 0)
8685oveq2d 7447 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑘) · 0))
8740ad2antrr 726 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝐴:ℕ0⟶ℂ)
8852ad2antlr 727 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → 𝑘 ∈ ℕ0)
8987, 88ffvelcdmd 7105 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → (𝐴𝑘) ∈ ℂ)
9089mul01d 11460 . . . . 5 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · 0) = 0)
9186, 90eqtrd 2777 . . . 4 ((((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) ∧ ¬ 𝑀𝑘) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
92 eldifsni 4790 . . . . . . 7 (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀}) → 𝑘𝑀)
9392adantl 481 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → 𝑘𝑀)
9469, 66letri3d 11403 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘 = 𝑀 ↔ (𝑘𝑀𝑀𝑘)))
9594necon3abid 2977 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (𝑘𝑀 ↔ ¬ (𝑘𝑀𝑀𝑘)))
9693, 95mpbid 232 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ¬ (𝑘𝑀𝑀𝑘))
97 ianor 984 . . . . 5 (¬ (𝑘𝑀𝑀𝑘) ↔ (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9896, 97sylib 218 . . . 4 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → (¬ 𝑘𝑀 ∨ ¬ 𝑀𝑘))
9965, 91, 98mpjaodan 961 . . 3 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ {𝑀})) → ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = 0)
100 fzfid 14014 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (0...(𝑀 + 𝑁)) ∈ Fin)
10126, 48, 99, 100fsumss 15761 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))))
10232sumsn 15782 . . . 4 ((𝑀 ∈ ℕ0 ∧ ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))) ∈ ℂ) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
10315, 46, 102syl2anc 584 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵‘((𝑀 + 𝑁) − 𝑀))))
104103, 38eqtrd 2777 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → Σ𝑘 ∈ {𝑀} ((𝐴𝑘) · (𝐵‘((𝑀 + 𝑁) − 𝑘))) = ((𝐴𝑀) · (𝐵𝑁)))
10512, 101, 1043eqtr2d 2783 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → ((coeff‘(𝐹f · 𝐺))‘(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐵𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  Σcsu 15722  Polycply 26223  coeffccoe 26225  degcdgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-0p 25705  df-ply 26227  df-coe 26229  df-dgr 26230
This theorem is referenced by:  dgrmul  26310  plymul0or  26322  plydivlem4  26338  vieta1lem2  26353
  Copyright terms: Public domain W3C validator