MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdn0conngrumgrv2 Structured version   Visualization version   GIF version

Theorem vdn0conngrumgrv2 30182
Description: A vertex in a connected multigraph with more than one vertex cannot have degree 0. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
vdn0conngrv2.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
vdn0conngrumgrv2 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0)

Proof of Theorem vdn0conngrumgrv2
Dummy variables 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdn0conngrv2.v . . . 4 𝑉 = (Vtx‘𝐺)
2 eqid 2736 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
3 eqid 2736 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
4 eqid 2736 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
51, 2, 3, 4vtxdumgrval 29471 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((VtxDeg‘𝐺)‘𝑁) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
65ad2ant2lr 748 . 2 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) = (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}))
7 umgruhgr 29088 . . . . . . . 8 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
82uhgrfun 29050 . . . . . . . 8 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
9 funfn 6571 . . . . . . . . 9 (Fun (iEdg‘𝐺) ↔ (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
109biimpi 216 . . . . . . . 8 (Fun (iEdg‘𝐺) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
117, 8, 103syl 18 . . . . . . 7 (𝐺 ∈ UMGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1211adantl 481 . . . . . 6 ((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
1312adantr 480 . . . . 5 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
14 simpl 482 . . . . . . 7 ((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) → 𝐺 ∈ ConnGraph)
1514adantr 480 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → 𝐺 ∈ ConnGraph)
16 simpl 482 . . . . . . 7 ((𝑁𝑉 ∧ 1 < (♯‘𝑉)) → 𝑁𝑉)
1716adantl 481 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → 𝑁𝑉)
18 simprr 772 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → 1 < (♯‘𝑉))
191, 2conngrv2edg 30181 . . . . . 6 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (♯‘𝑉)) → ∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒)
2015, 17, 18, 19syl3anc 1373 . . . . 5 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒)
21 eleq2 2824 . . . . . . 7 (𝑒 = ((iEdg‘𝐺)‘𝑥) → (𝑁𝑒𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2221rexrn 7082 . . . . . 6 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒 ↔ ∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2322biimpd 229 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → (∃𝑒 ∈ ran (iEdg‘𝐺)𝑁𝑒 → ∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
2413, 20, 23sylc 65 . . . 4 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
25 dfrex2 3064 . . . 4 (∃𝑥 ∈ dom (iEdg‘𝐺)𝑁 ∈ ((iEdg‘𝐺)‘𝑥) ↔ ¬ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
2624, 25sylib 218 . . 3 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ¬ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
27 fvex 6894 . . . . . . . 8 (iEdg‘𝐺) ∈ V
2827dmex 7910 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
2928a1i 11 . . . . . 6 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → dom (iEdg‘𝐺) ∈ V)
30 rabexg 5312 . . . . . 6 (dom (iEdg‘𝐺) ∈ V → {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V)
31 hasheq0 14386 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} ∈ V → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0 ↔ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅))
3229, 30, 313syl 18 . . . . 5 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0 ↔ {𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅))
33 rabeq0 4368 . . . . 5 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)} = ∅ ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥))
3432, 33bitrdi 287 . . . 4 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) = 0 ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
3534necon3abid 2969 . . 3 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 0 ↔ ¬ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)))
3626, 35mpbird 257 . 2 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑁 ∈ ((iEdg‘𝐺)‘𝑥)}) ≠ 0)
376, 36eqnetrd 3000 1 (((𝐺 ∈ ConnGraph ∧ 𝐺 ∈ UMGraph) ∧ (𝑁𝑉 ∧ 1 < (♯‘𝑉))) → ((VtxDeg‘𝐺)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  c0 4313   class class class wbr 5124  dom cdm 5659  ran crn 5660  Fun wfun 6530   Fn wfn 6531  cfv 6536  0cc0 11134  1c1 11135   < clt 11274  chash 14353  Vtxcvtx 28980  iEdgciedg 28981  UHGraphcuhgr 29040  UMGraphcumgr 29065  VtxDegcvtxdg 29450  ConnGraphcconngr 30172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-xadd 13134  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-uhgr 29042  df-upgr 29066  df-umgr 29067  df-vtxdg 29451  df-wlks 29584  df-wlkson 29585  df-trlson 29678  df-pthson 29703  df-conngr 30173
This theorem is referenced by:  vdgn0frgrv2  30281
  Copyright terms: Public domain W3C validator