Step | Hyp | Ref
| Expression |
1 | | vdn0conngrv2.v |
. . . 4
β’ π = (VtxβπΊ) |
2 | | eqid 2732 |
. . . 4
β’
(iEdgβπΊ) =
(iEdgβπΊ) |
3 | | eqid 2732 |
. . . 4
β’ dom
(iEdgβπΊ) = dom
(iEdgβπΊ) |
4 | | eqid 2732 |
. . . 4
β’
(VtxDegβπΊ) =
(VtxDegβπΊ) |
5 | 1, 2, 3, 4 | vtxdumgrval 28732 |
. . 3
β’ ((πΊ β UMGraph β§ π β π) β ((VtxDegβπΊ)βπ) = (β―β{π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)})) |
6 | 5 | ad2ant2lr 746 |
. 2
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β ((VtxDegβπΊ)βπ) = (β―β{π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)})) |
7 | | umgruhgr 28353 |
. . . . . . . 8
β’ (πΊ β UMGraph β πΊ β
UHGraph) |
8 | 2 | uhgrfun 28315 |
. . . . . . . 8
β’ (πΊ β UHGraph β Fun
(iEdgβπΊ)) |
9 | | funfn 6575 |
. . . . . . . . 9
β’ (Fun
(iEdgβπΊ) β
(iEdgβπΊ) Fn dom
(iEdgβπΊ)) |
10 | 9 | biimpi 215 |
. . . . . . . 8
β’ (Fun
(iEdgβπΊ) β
(iEdgβπΊ) Fn dom
(iEdgβπΊ)) |
11 | 7, 8, 10 | 3syl 18 |
. . . . . . 7
β’ (πΊ β UMGraph β
(iEdgβπΊ) Fn dom
(iEdgβπΊ)) |
12 | 11 | adantl 482 |
. . . . . 6
β’ ((πΊ β ConnGraph β§ πΊ β UMGraph) β
(iEdgβπΊ) Fn dom
(iEdgβπΊ)) |
13 | 12 | adantr 481 |
. . . . 5
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β (iEdgβπΊ) Fn dom (iEdgβπΊ)) |
14 | | simpl 483 |
. . . . . . 7
β’ ((πΊ β ConnGraph β§ πΊ β UMGraph) β πΊ β
ConnGraph) |
15 | 14 | adantr 481 |
. . . . . 6
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β πΊ β ConnGraph) |
16 | | simpl 483 |
. . . . . . 7
β’ ((π β π β§ 1 < (β―βπ)) β π β π) |
17 | 16 | adantl 482 |
. . . . . 6
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β π β π) |
18 | | simprr 771 |
. . . . . 6
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β 1 <
(β―βπ)) |
19 | 1, 2 | conngrv2edg 29437 |
. . . . . 6
β’ ((πΊ β ConnGraph β§ π β π β§ 1 < (β―βπ)) β βπ β ran (iEdgβπΊ)π β π) |
20 | 15, 17, 18, 19 | syl3anc 1371 |
. . . . 5
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β βπ β ran (iEdgβπΊ)π β π) |
21 | | eleq2 2822 |
. . . . . . 7
β’ (π = ((iEdgβπΊ)βπ₯) β (π β π β π β ((iEdgβπΊ)βπ₯))) |
22 | 21 | rexrn 7085 |
. . . . . 6
β’
((iEdgβπΊ) Fn
dom (iEdgβπΊ) β
(βπ β ran
(iEdgβπΊ)π β π β βπ₯ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ₯))) |
23 | 22 | biimpd 228 |
. . . . 5
β’
((iEdgβπΊ) Fn
dom (iEdgβπΊ) β
(βπ β ran
(iEdgβπΊ)π β π β βπ₯ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ₯))) |
24 | 13, 20, 23 | sylc 65 |
. . . 4
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β βπ₯ β dom (iEdgβπΊ)π β ((iEdgβπΊ)βπ₯)) |
25 | | dfrex2 3073 |
. . . 4
β’
(βπ₯ β dom
(iEdgβπΊ)π β ((iEdgβπΊ)βπ₯) β Β¬ βπ₯ β dom (iEdgβπΊ) Β¬ π β ((iEdgβπΊ)βπ₯)) |
26 | 24, 25 | sylib 217 |
. . 3
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β Β¬ βπ₯ β dom (iEdgβπΊ) Β¬ π β ((iEdgβπΊ)βπ₯)) |
27 | | fvex 6901 |
. . . . . . . 8
β’
(iEdgβπΊ)
β V |
28 | 27 | dmex 7898 |
. . . . . . 7
β’ dom
(iEdgβπΊ) β
V |
29 | 28 | a1i 11 |
. . . . . 6
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β dom (iEdgβπΊ) β V) |
30 | | rabexg 5330 |
. . . . . 6
β’ (dom
(iEdgβπΊ) β V
β {π₯ β dom
(iEdgβπΊ) β£
π β ((iEdgβπΊ)βπ₯)} β V) |
31 | | hasheq0 14319 |
. . . . . 6
β’ ({π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)} β V β ((β―β{π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)}) = 0 β {π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)} = β
)) |
32 | 29, 30, 31 | 3syl 18 |
. . . . 5
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β
((β―β{π₯ β
dom (iEdgβπΊ) β£
π β ((iEdgβπΊ)βπ₯)}) = 0 β {π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)} = β
)) |
33 | | rabeq0 4383 |
. . . . 5
β’ ({π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)} = β
β βπ₯ β dom (iEdgβπΊ) Β¬ π β ((iEdgβπΊ)βπ₯)) |
34 | 32, 33 | bitrdi 286 |
. . . 4
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β
((β―β{π₯ β
dom (iEdgβπΊ) β£
π β ((iEdgβπΊ)βπ₯)}) = 0 β βπ₯ β dom (iEdgβπΊ) Β¬ π β ((iEdgβπΊ)βπ₯))) |
35 | 34 | necon3abid 2977 |
. . 3
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β
((β―β{π₯ β
dom (iEdgβπΊ) β£
π β ((iEdgβπΊ)βπ₯)}) β 0 β Β¬ βπ₯ β dom (iEdgβπΊ) Β¬ π β ((iEdgβπΊ)βπ₯))) |
36 | 26, 35 | mpbird 256 |
. 2
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β (β―β{π₯ β dom (iEdgβπΊ) β£ π β ((iEdgβπΊ)βπ₯)}) β 0) |
37 | 6, 36 | eqnetrd 3008 |
1
β’ (((πΊ β ConnGraph β§ πΊ β UMGraph) β§ (π β π β§ 1 < (β―βπ))) β ((VtxDegβπΊ)βπ) β 0) |