Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemradcnv Structured version   Visualization version   GIF version

Theorem binomcxplemradcnv 44376
Description: Lemma for binomcxp 44381. By binomcxplemfrat 44375 and radcnvrat 44338 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹𝑘) · (𝑏𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
Assertion
Ref Expression
binomcxplemradcnv ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Distinct variable groups:   𝐶,𝑘   𝑘,𝑏,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemradcnv
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 simpl 482 . . . . . . . . 9 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → 𝑏 = 𝑥)
32oveq1d 7420 . . . . . . . 8 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → (𝑏𝑘) = (𝑥𝑘))
43oveq2d 7421 . . . . . . 7 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑏𝑘)) = ((𝐹𝑘) · (𝑥𝑘)))
54mpteq2dva 5214 . . . . . 6 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))))
6 fveq2 6876 . . . . . . . 8 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
7 oveq2 7413 . . . . . . . 8 (𝑘 = 𝑦 → (𝑥𝑘) = (𝑥𝑦))
86, 7oveq12d 7423 . . . . . . 7 (𝑘 = 𝑦 → ((𝐹𝑘) · (𝑥𝑘)) = ((𝐹𝑦) · (𝑥𝑦)))
98cbvmptv 5225 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦)))
105, 9eqtrdi 2786 . . . . 5 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
1110cbvmptv 5225 . . . 4 (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
121, 11eqtri 2758 . . 3 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
13 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
1413ad2antrr 726 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
15 simpr 484 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
1614, 15bcccl 44363 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
17 binomcxplem.f . . . 4 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
1816, 17fmptd 7104 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ)
19 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
20 fvoveq1 7428 . . . . . 6 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
21 fveq2 6876 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2220, 21oveq12d 7423 . . . . 5 (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹𝑖)))
2322fveq2d 6880 . . . 4 (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
2423cbvmptv 5225 . . 3 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
25 nn0uz 12894 . . 3 0 = (ℤ‘0)
26 0nn0 12516 . . . 4 0 ∈ ℕ0
2726a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0)
2817a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
29 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖)
3029oveq2d 7421 . . . . 5 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖))
31 simpr 484 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
32 ovexd 7440 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V)
3328, 30, 31, 32fvmptd 6993 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) = (𝐶C𝑐𝑖))
34 elfznn0 13637 . . . . . . 7 (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0)
3534con3i 154 . . . . . 6 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3635ad2antlr 727 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3713adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
38 simpr 484 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3937, 38bcc0 44364 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1))))
4039necon3abid 2968 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4140adantlr 715 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4236, 41mpbird 257 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0)
4333, 42eqnetrd 2999 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) ≠ 0)
44 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
45 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
46 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
4744, 45, 46, 13, 17binomcxplemfrat 44375 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
48 ax-1ne0 11198 . . . 4 1 ≠ 0
4948a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0)
5012, 18, 19, 24, 25, 27, 43, 47, 49radcnvrat 44338 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1))
51 1div1e1 11932 . 2 (1 / 1) = 1
5250, 51eqtrdi 2786 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459   class class class wbr 5119  cmpt 5201  dom cdm 5654  cfv 6531  (class class class)co 7405  supcsup 9452  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cmin 11466   / cdiv 11894  0cn0 12501  +crp 13008  ...cfz 13524  seqcseq 14019  cexp 14079  abscabs 15253  cli 15500  C𝑐cbcc 44360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-ioo 13366  df-ico 13368  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-fac 14292  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-prod 15920  df-fallfac 16023  df-bcc 44361
This theorem is referenced by:  binomcxplemdvbinom  44377  binomcxplemnotnn0  44380
  Copyright terms: Public domain W3C validator