Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemradcnv Structured version   Visualization version   GIF version

Theorem binomcxplemradcnv 39078
Description: Lemma for binomcxp 39083. By binomcxplemfrat 39077 and radcnvrat 39040 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹𝑘) · (𝑏𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
Assertion
Ref Expression
binomcxplemradcnv ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Distinct variable groups:   𝐶,𝑘   𝑘,𝑏,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemradcnv
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 simpl 468 . . . . . . . . 9 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → 𝑏 = 𝑥)
32oveq1d 6809 . . . . . . . 8 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → (𝑏𝑘) = (𝑥𝑘))
43oveq2d 6810 . . . . . . 7 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑏𝑘)) = ((𝐹𝑘) · (𝑥𝑘)))
54mpteq2dva 4879 . . . . . 6 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))))
6 fveq2 6333 . . . . . . . 8 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
7 oveq2 6802 . . . . . . . 8 (𝑘 = 𝑦 → (𝑥𝑘) = (𝑥𝑦))
86, 7oveq12d 6812 . . . . . . 7 (𝑘 = 𝑦 → ((𝐹𝑘) · (𝑥𝑘)) = ((𝐹𝑦) · (𝑥𝑦)))
98cbvmptv 4885 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦)))
105, 9syl6eq 2821 . . . . 5 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
1110cbvmptv 4885 . . . 4 (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
121, 11eqtri 2793 . . 3 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
13 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
1413ad2antrr 699 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
15 simpr 471 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
1614, 15bcccl 39065 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
17 binomcxplem.f . . . 4 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
1816, 17fmptd 6528 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ)
19 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
20 fvoveq1 6817 . . . . . 6 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
21 fveq2 6333 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2220, 21oveq12d 6812 . . . . 5 (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹𝑖)))
2322fveq2d 6337 . . . 4 (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
2423cbvmptv 4885 . . 3 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
25 nn0uz 11925 . . 3 0 = (ℤ‘0)
26 0nn0 11510 . . . 4 0 ∈ ℕ0
2726a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0)
2817a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
29 simpr 471 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖)
3029oveq2d 6810 . . . . 5 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖))
31 simpr 471 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
32 ovexd 6826 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V)
3328, 30, 31, 32fvmptd 6431 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) = (𝐶C𝑐𝑖))
34 elfznn0 12641 . . . . . . 7 (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0)
3534con3i 151 . . . . . 6 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3635ad2antlr 700 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3713adantr 466 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
38 simpr 471 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3937, 38bcc0 39066 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1))))
4039necon3abid 2979 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4140adantlr 688 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4236, 41mpbird 247 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0)
4333, 42eqnetrd 3010 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) ≠ 0)
44 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
45 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
46 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
4744, 45, 46, 13, 17binomcxplemfrat 39077 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
48 ax-1ne0 10208 . . . 4 1 ≠ 0
4948a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0)
5012, 18, 19, 24, 25, 27, 43, 47, 49radcnvrat 39040 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1))
51 1div1e1 10920 . 2 (1 / 1) = 1
5250, 51syl6eq 2821 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  {crab 3065  Vcvv 3351   class class class wbr 4787  cmpt 4864  dom cdm 5250  cfv 6032  (class class class)co 6794  supcsup 8503  cc 10137  cr 10138  0cc0 10139  1c1 10140   + caddc 10142   · cmul 10144  *cxr 10276   < clt 10277  cmin 10469   / cdiv 10887  0cn0 11495  +crp 12036  ...cfz 12534  seqcseq 13009  cexp 13068  abscabs 14183  cli 14424  C𝑐cbcc 39062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217  ax-addf 10218  ax-mulf 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-isom 6041  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-of 7045  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-1o 7714  df-oadd 7718  df-er 7897  df-pm 8013  df-en 8111  df-dom 8112  df-sdom 8113  df-fin 8114  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8966  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-n0 11496  df-z 11581  df-uz 11890  df-q 11993  df-rp 12037  df-ioo 12385  df-ico 12387  df-fz 12535  df-fzo 12675  df-fl 12802  df-seq 13010  df-exp 13069  df-fac 13266  df-hash 13323  df-shft 14016  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-limsup 14411  df-clim 14428  df-rlim 14429  df-sum 14626  df-prod 14844  df-fallfac 14945  df-bcc 39063
This theorem is referenced by:  binomcxplemdvbinom  39079  binomcxplemnotnn0  39082
  Copyright terms: Public domain W3C validator