| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemradcnv | Structured version Visualization version GIF version | ||
| Description: Lemma for binomcxp 44350. By binomcxplemfrat 44344 and radcnvrat 44307 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
| binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| Ref | Expression |
|---|---|
| binomcxplemradcnv | ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomcxplem.s | . . . 4 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
| 2 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑥) | |
| 3 | 2 | oveq1d 7364 | . . . . . . . 8 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → (𝑏↑𝑘) = (𝑥↑𝑘)) |
| 4 | 3 | oveq2d 7365 | . . . . . . 7 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · (𝑏↑𝑘)) = ((𝐹‘𝑘) · (𝑥↑𝑘))) |
| 5 | 4 | mpteq2dva 5185 | . . . . . 6 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘)))) |
| 6 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) | |
| 7 | oveq2 7357 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝑥↑𝑘) = (𝑥↑𝑦)) | |
| 8 | 6, 7 | oveq12d 7367 | . . . . . . 7 ⊢ (𝑘 = 𝑦 → ((𝐹‘𝑘) · (𝑥↑𝑘)) = ((𝐹‘𝑦) · (𝑥↑𝑦))) |
| 9 | 8 | cbvmptv 5196 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦))) |
| 10 | 5, 9 | eqtrdi 2780 | . . . . 5 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
| 11 | 10 | cbvmptv 5196 | . . . 4 ⊢ (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
| 12 | 1, 11 | eqtri 2752 | . . 3 ⊢ 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
| 13 | binomcxp.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 14 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
| 15 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
| 16 | 14, 15 | bcccl 44332 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
| 17 | binomcxplem.f | . . . 4 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
| 18 | 16, 17 | fmptd 7048 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ) |
| 19 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 20 | fvoveq1 7372 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1))) | |
| 21 | fveq2 6822 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) | |
| 22 | 20, 21 | oveq12d 7367 | . . . . 5 ⊢ (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖))) |
| 23 | 22 | fveq2d 6826 | . . . 4 ⊢ (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
| 24 | 23 | cbvmptv 5196 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
| 25 | nn0uz 12777 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 26 | 0nn0 12399 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0) |
| 28 | 17 | a1i 11 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
| 29 | simpr 484 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖) | |
| 30 | 29 | oveq2d 7365 | . . . . 5 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖)) |
| 31 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 32 | ovexd 7384 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V) | |
| 33 | 28, 30, 31, 32 | fvmptd 6937 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) = (𝐶C𝑐𝑖)) |
| 34 | elfznn0 13523 | . . . . . . 7 ⊢ (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0) | |
| 35 | 34 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
| 36 | 35 | ad2antlr 727 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
| 37 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ) |
| 38 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 39 | 37, 38 | bcc0 44333 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1)))) |
| 40 | 39 | necon3abid 2961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
| 41 | 40 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
| 42 | 36, 41 | mpbird 257 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0) |
| 43 | 33, 42 | eqnetrd 2992 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) ≠ 0) |
| 44 | binomcxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 45 | binomcxp.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 46 | binomcxp.lt | . . . 4 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
| 47 | 44, 45, 46, 13, 17 | binomcxplemfrat 44344 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) |
| 48 | ax-1ne0 11078 | . . . 4 ⊢ 1 ≠ 0 | |
| 49 | 48 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0) |
| 50 | 12, 18, 19, 24, 25, 27, 43, 47, 49 | radcnvrat 44307 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1)) |
| 51 | 1div1e1 11815 | . 2 ⊢ (1 / 1) = 1 | |
| 52 | 50, 51 | eqtrdi 2780 | 1 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3394 Vcvv 3436 class class class wbr 5092 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 supcsup 9330 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ℝ*cxr 11148 < clt 11149 − cmin 11347 / cdiv 11777 ℕ0cn0 12384 ℝ+crp 12893 ...cfz 13410 seqcseq 13908 ↑cexp 13968 abscabs 15141 ⇝ cli 15391 C𝑐cbcc 44329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-ioo 13252 df-ico 13254 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-prod 15811 df-fallfac 15914 df-bcc 44330 |
| This theorem is referenced by: binomcxplemdvbinom 44346 binomcxplemnotnn0 44349 |
| Copyright terms: Public domain | W3C validator |