Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemradcnv Structured version   Visualization version   GIF version

Theorem binomcxplemradcnv 44334
Description: Lemma for binomcxp 44339. By binomcxplemfrat 44333 and radcnvrat 44296 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹𝑘) · (𝑏𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
Assertion
Ref Expression
binomcxplemradcnv ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Distinct variable groups:   𝐶,𝑘   𝑘,𝑏,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemradcnv
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 simpl 482 . . . . . . . . 9 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → 𝑏 = 𝑥)
32oveq1d 7384 . . . . . . . 8 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → (𝑏𝑘) = (𝑥𝑘))
43oveq2d 7385 . . . . . . 7 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑏𝑘)) = ((𝐹𝑘) · (𝑥𝑘)))
54mpteq2dva 5195 . . . . . 6 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))))
6 fveq2 6840 . . . . . . . 8 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
7 oveq2 7377 . . . . . . . 8 (𝑘 = 𝑦 → (𝑥𝑘) = (𝑥𝑦))
86, 7oveq12d 7387 . . . . . . 7 (𝑘 = 𝑦 → ((𝐹𝑘) · (𝑥𝑘)) = ((𝐹𝑦) · (𝑥𝑦)))
98cbvmptv 5206 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦)))
105, 9eqtrdi 2780 . . . . 5 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
1110cbvmptv 5206 . . . 4 (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
121, 11eqtri 2752 . . 3 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
13 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
1413ad2antrr 726 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
15 simpr 484 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
1614, 15bcccl 44321 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
17 binomcxplem.f . . . 4 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
1816, 17fmptd 7068 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ)
19 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
20 fvoveq1 7392 . . . . . 6 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
21 fveq2 6840 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2220, 21oveq12d 7387 . . . . 5 (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹𝑖)))
2322fveq2d 6844 . . . 4 (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
2423cbvmptv 5206 . . 3 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
25 nn0uz 12811 . . 3 0 = (ℤ‘0)
26 0nn0 12433 . . . 4 0 ∈ ℕ0
2726a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0)
2817a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
29 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖)
3029oveq2d 7385 . . . . 5 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖))
31 simpr 484 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
32 ovexd 7404 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V)
3328, 30, 31, 32fvmptd 6957 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) = (𝐶C𝑐𝑖))
34 elfznn0 13557 . . . . . . 7 (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0)
3534con3i 154 . . . . . 6 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3635ad2antlr 727 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3713adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
38 simpr 484 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3937, 38bcc0 44322 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1))))
4039necon3abid 2961 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4140adantlr 715 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4236, 41mpbird 257 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0)
4333, 42eqnetrd 2992 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) ≠ 0)
44 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
45 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
46 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
4744, 45, 46, 13, 17binomcxplemfrat 44333 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
48 ax-1ne0 11113 . . . 4 1 ≠ 0
4948a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0)
5012, 18, 19, 24, 25, 27, 43, 47, 49radcnvrat 44296 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1))
51 1div1e1 11849 . 2 (1 / 1) = 1
5250, 51eqtrdi 2780 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3402  Vcvv 3444   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  supcsup 9367  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cmin 11381   / cdiv 11811  0cn0 12418  +crp 12927  ...cfz 13444  seqcseq 13942  cexp 14002  abscabs 15176  cli 15426  C𝑐cbcc 44318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-ioo 13286  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-fallfac 15949  df-bcc 44319
This theorem is referenced by:  binomcxplemdvbinom  44335  binomcxplemnotnn0  44338
  Copyright terms: Public domain W3C validator