Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemradcnv | Structured version Visualization version GIF version |
Description: Lemma for binomcxp 41956. By binomcxplemfrat 41950 and radcnvrat 41913 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
Ref | Expression |
---|---|
binomcxplemradcnv | ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxplem.s | . . . 4 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
2 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑥) | |
3 | 2 | oveq1d 7282 | . . . . . . . 8 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → (𝑏↑𝑘) = (𝑥↑𝑘)) |
4 | 3 | oveq2d 7283 | . . . . . . 7 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · (𝑏↑𝑘)) = ((𝐹‘𝑘) · (𝑥↑𝑘))) |
5 | 4 | mpteq2dva 5173 | . . . . . 6 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘)))) |
6 | fveq2 6766 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) | |
7 | oveq2 7275 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝑥↑𝑘) = (𝑥↑𝑦)) | |
8 | 6, 7 | oveq12d 7285 | . . . . . . 7 ⊢ (𝑘 = 𝑦 → ((𝐹‘𝑘) · (𝑥↑𝑘)) = ((𝐹‘𝑦) · (𝑥↑𝑦))) |
9 | 8 | cbvmptv 5186 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦))) |
10 | 5, 9 | eqtrdi 2794 | . . . . 5 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
11 | 10 | cbvmptv 5186 | . . . 4 ⊢ (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
12 | 1, 11 | eqtri 2766 | . . 3 ⊢ 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
13 | binomcxp.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
14 | 13 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
15 | simpr 485 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
16 | 14, 15 | bcccl 41938 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
17 | binomcxplem.f | . . . 4 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
18 | 16, 17 | fmptd 6980 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ) |
19 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
20 | fvoveq1 7290 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1))) | |
21 | fveq2 6766 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) | |
22 | 20, 21 | oveq12d 7285 | . . . . 5 ⊢ (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖))) |
23 | 22 | fveq2d 6770 | . . . 4 ⊢ (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
24 | 23 | cbvmptv 5186 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
25 | nn0uz 12630 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
26 | 0nn0 12258 | . . . 4 ⊢ 0 ∈ ℕ0 | |
27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0) |
28 | 17 | a1i 11 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
29 | simpr 485 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖) | |
30 | 29 | oveq2d 7283 | . . . . 5 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖)) |
31 | simpr 485 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
32 | ovexd 7302 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V) | |
33 | 28, 30, 31, 32 | fvmptd 6874 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) = (𝐶C𝑐𝑖)) |
34 | elfznn0 13359 | . . . . . . 7 ⊢ (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0) | |
35 | 34 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
36 | 35 | ad2antlr 724 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
37 | 13 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ) |
38 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
39 | 37, 38 | bcc0 41939 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1)))) |
40 | 39 | necon3abid 2980 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
41 | 40 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
42 | 36, 41 | mpbird 256 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0) |
43 | 33, 42 | eqnetrd 3011 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) ≠ 0) |
44 | binomcxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
45 | binomcxp.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
46 | binomcxp.lt | . . . 4 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
47 | 44, 45, 46, 13, 17 | binomcxplemfrat 41950 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) |
48 | ax-1ne0 10950 | . . . 4 ⊢ 1 ≠ 0 | |
49 | 48 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0) |
50 | 12, 18, 19, 24, 25, 27, 43, 47, 49 | radcnvrat 41913 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1)) |
51 | 1div1e1 11675 | . 2 ⊢ (1 / 1) = 1 | |
52 | 50, 51 | eqtrdi 2794 | 1 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3429 class class class wbr 5073 ↦ cmpt 5156 dom cdm 5584 ‘cfv 6426 (class class class)co 7267 supcsup 9186 ℂcc 10879 ℝcr 10880 0cc0 10881 1c1 10882 + caddc 10884 · cmul 10886 ℝ*cxr 11018 < clt 11019 − cmin 11215 / cdiv 11642 ℕ0cn0 12243 ℝ+crp 12740 ...cfz 13249 seqcseq 13731 ↑cexp 13792 abscabs 14955 ⇝ cli 15203 C𝑐cbcc 41935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-inf2 9386 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-se 5540 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-isom 6435 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-of 7523 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-pm 8605 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-oi 9256 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-z 12330 df-uz 12593 df-q 12699 df-rp 12741 df-ioo 13093 df-ico 13095 df-fz 13250 df-fzo 13393 df-fl 13522 df-seq 13732 df-exp 13793 df-fac 13998 df-hash 14055 df-shft 14788 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-limsup 15190 df-clim 15207 df-rlim 15208 df-sum 15408 df-prod 15626 df-fallfac 15727 df-bcc 41936 |
This theorem is referenced by: binomcxplemdvbinom 41952 binomcxplemnotnn0 41955 |
Copyright terms: Public domain | W3C validator |