Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemradcnv Structured version   Visualization version   GIF version

Theorem binomcxplemradcnv 41859
Description: Lemma for binomcxp 41864. By binomcxplemfrat 41858 and radcnvrat 41821 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹𝑘) · (𝑏𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
binomcxplem.s 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
binomcxplem.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
Assertion
Ref Expression
binomcxplemradcnv ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Distinct variable groups:   𝐶,𝑘   𝑘,𝑏,𝐹   𝑗,𝑘,𝜑   𝐶,𝑗   𝑆,𝑟
Allowed substitution hints:   𝜑(𝑟,𝑏)   𝐴(𝑗,𝑘,𝑟,𝑏)   𝐵(𝑗,𝑘,𝑟,𝑏)   𝐶(𝑟,𝑏)   𝑅(𝑗,𝑘,𝑟,𝑏)   𝑆(𝑗,𝑘,𝑏)   𝐹(𝑗,𝑟)

Proof of Theorem binomcxplemradcnv
Dummy variables 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 binomcxplem.s . . . 4 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))))
2 simpl 482 . . . . . . . . 9 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → 𝑏 = 𝑥)
32oveq1d 7270 . . . . . . . 8 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → (𝑏𝑘) = (𝑥𝑘))
43oveq2d 7271 . . . . . . 7 ((𝑏 = 𝑥𝑘 ∈ ℕ0) → ((𝐹𝑘) · (𝑏𝑘)) = ((𝐹𝑘) · (𝑥𝑘)))
54mpteq2dva 5170 . . . . . 6 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))))
6 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑦 → (𝐹𝑘) = (𝐹𝑦))
7 oveq2 7263 . . . . . . . 8 (𝑘 = 𝑦 → (𝑥𝑘) = (𝑥𝑦))
86, 7oveq12d 7273 . . . . . . 7 (𝑘 = 𝑦 → ((𝐹𝑘) · (𝑥𝑘)) = ((𝐹𝑦) · (𝑥𝑦)))
98cbvmptv 5183 . . . . . 6 (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑥𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦)))
105, 9eqtrdi 2795 . . . . 5 (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
1110cbvmptv 5183 . . . 4 (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹𝑘) · (𝑏𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
121, 11eqtri 2766 . . 3 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹𝑦) · (𝑥𝑦))))
13 binomcxp.c . . . . . 6 (𝜑𝐶 ∈ ℂ)
1413ad2antrr 722 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ)
15 simpr 484 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0)
1614, 15bcccl 41846 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ)
17 binomcxplem.f . . . 4 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
1816, 17fmptd 6970 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ)
19 binomcxplem.r . . 3 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆𝑟)) ∈ dom ⇝ }, ℝ*, < )
20 fvoveq1 7278 . . . . . 6 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
21 fveq2 6756 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2220, 21oveq12d 7273 . . . . 5 (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹𝑖)))
2322fveq2d 6760 . . . 4 (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
2423cbvmptv 5183 . . 3 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹𝑖))))
25 nn0uz 12549 . . 3 0 = (ℤ‘0)
26 0nn0 12178 . . . 4 0 ∈ ℕ0
2726a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0)
2817a1i 11 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
29 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖)
3029oveq2d 7271 . . . . 5 ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖))
31 simpr 484 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
32 ovexd 7290 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V)
3328, 30, 31, 32fvmptd 6864 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) = (𝐶C𝑐𝑖))
34 elfznn0 13278 . . . . . . 7 (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0)
3534con3i 154 . . . . . 6 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3635ad2antlr 723 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1)))
3713adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
38 simpr 484 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
3937, 38bcc0 41847 . . . . . . 7 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1))))
4039necon3abid 2979 . . . . . 6 ((𝜑𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4140adantlr 711 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1))))
4236, 41mpbird 256 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0)
4333, 42eqnetrd 3010 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹𝑖) ≠ 0)
44 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
45 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
46 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
4744, 45, 46, 13, 17binomcxplemfrat 41858 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
48 ax-1ne0 10871 . . . 4 1 ≠ 0
4948a1i 11 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0)
5012, 18, 19, 24, 25, 27, 43, 47, 49radcnvrat 41821 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1))
51 1div1e1 11595 . 2 (1 / 1) = 1
5250, 51eqtrdi 2795 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cmin 11135   / cdiv 11562  0cn0 12163  +crp 12659  ...cfz 13168  seqcseq 13649  cexp 13710  abscabs 14873  cli 15121  C𝑐cbcc 41843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-fallfac 15645  df-bcc 41844
This theorem is referenced by:  binomcxplemdvbinom  41860  binomcxplemnotnn0  41863
  Copyright terms: Public domain W3C validator