![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemradcnv | Structured version Visualization version GIF version |
Description: Lemma for binomcxp 43825. By binomcxplemfrat 43819 and radcnvrat 43782 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
Ref | Expression |
---|---|
binomcxplemradcnv | ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxplem.s | . . . 4 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
2 | simpl 481 | . . . . . . . . 9 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑥) | |
3 | 2 | oveq1d 7441 | . . . . . . . 8 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → (𝑏↑𝑘) = (𝑥↑𝑘)) |
4 | 3 | oveq2d 7442 | . . . . . . 7 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · (𝑏↑𝑘)) = ((𝐹‘𝑘) · (𝑥↑𝑘))) |
5 | 4 | mpteq2dva 5252 | . . . . . 6 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘)))) |
6 | fveq2 6902 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) | |
7 | oveq2 7434 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝑥↑𝑘) = (𝑥↑𝑦)) | |
8 | 6, 7 | oveq12d 7444 | . . . . . . 7 ⊢ (𝑘 = 𝑦 → ((𝐹‘𝑘) · (𝑥↑𝑘)) = ((𝐹‘𝑦) · (𝑥↑𝑦))) |
9 | 8 | cbvmptv 5265 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦))) |
10 | 5, 9 | eqtrdi 2784 | . . . . 5 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
11 | 10 | cbvmptv 5265 | . . . 4 ⊢ (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
12 | 1, 11 | eqtri 2756 | . . 3 ⊢ 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
13 | binomcxp.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
14 | 13 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
15 | simpr 483 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
16 | 14, 15 | bcccl 43807 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
17 | binomcxplem.f | . . . 4 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
18 | 16, 17 | fmptd 7129 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ) |
19 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
20 | fvoveq1 7449 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1))) | |
21 | fveq2 6902 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) | |
22 | 20, 21 | oveq12d 7444 | . . . . 5 ⊢ (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖))) |
23 | 22 | fveq2d 6906 | . . . 4 ⊢ (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
24 | 23 | cbvmptv 5265 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
25 | nn0uz 12902 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
26 | 0nn0 12525 | . . . 4 ⊢ 0 ∈ ℕ0 | |
27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0) |
28 | 17 | a1i 11 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
29 | simpr 483 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖) | |
30 | 29 | oveq2d 7442 | . . . . 5 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖)) |
31 | simpr 483 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
32 | ovexd 7461 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V) | |
33 | 28, 30, 31, 32 | fvmptd 7017 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) = (𝐶C𝑐𝑖)) |
34 | elfznn0 13634 | . . . . . . 7 ⊢ (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0) | |
35 | 34 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
36 | 35 | ad2antlr 725 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
37 | 13 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ) |
38 | simpr 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
39 | 37, 38 | bcc0 43808 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1)))) |
40 | 39 | necon3abid 2974 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
41 | 40 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
42 | 36, 41 | mpbird 256 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0) |
43 | 33, 42 | eqnetrd 3005 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) ≠ 0) |
44 | binomcxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
45 | binomcxp.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
46 | binomcxp.lt | . . . 4 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
47 | 44, 45, 46, 13, 17 | binomcxplemfrat 43819 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) |
48 | ax-1ne0 11215 | . . . 4 ⊢ 1 ≠ 0 | |
49 | 48 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0) |
50 | 12, 18, 19, 24, 25, 27, 43, 47, 49 | radcnvrat 43782 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1)) |
51 | 1div1e1 11942 | . 2 ⊢ (1 / 1) = 1 | |
52 | 50, 51 | eqtrdi 2784 | 1 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 {crab 3430 Vcvv 3473 class class class wbr 5152 ↦ cmpt 5235 dom cdm 5682 ‘cfv 6553 (class class class)co 7426 supcsup 9471 ℂcc 11144 ℝcr 11145 0cc0 11146 1c1 11147 + caddc 11149 · cmul 11151 ℝ*cxr 11285 < clt 11286 − cmin 11482 / cdiv 11909 ℕ0cn0 12510 ℝ+crp 13014 ...cfz 13524 seqcseq 14006 ↑cexp 14066 abscabs 15221 ⇝ cli 15468 C𝑐cbcc 43804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9672 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-q 12971 df-rp 13015 df-ioo 13368 df-ico 13370 df-fz 13525 df-fzo 13668 df-fl 13797 df-seq 14007 df-exp 14067 df-fac 14273 df-hash 14330 df-shft 15054 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-limsup 15455 df-clim 15472 df-rlim 15473 df-sum 15673 df-prod 15890 df-fallfac 15991 df-bcc 43805 |
This theorem is referenced by: binomcxplemdvbinom 43821 binomcxplemnotnn0 43824 |
Copyright terms: Public domain | W3C validator |