| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > binomcxplemradcnv | Structured version Visualization version GIF version | ||
| Description: Lemma for binomcxp 44353. By binomcxplemfrat 44347 and radcnvrat 44310 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
| Ref | Expression |
|---|---|
| binomcxp.a | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| binomcxp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| binomcxp.lt | ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
| binomcxp.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| binomcxplem.f | ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
| binomcxplem.s | ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) |
| binomcxplem.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
| Ref | Expression |
|---|---|
| binomcxplemradcnv | ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomcxplem.s | . . . 4 ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) | |
| 2 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → 𝑏 = 𝑥) | |
| 3 | 2 | oveq1d 7405 | . . . . . . . 8 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → (𝑏↑𝑘) = (𝑥↑𝑘)) |
| 4 | 3 | oveq2d 7406 | . . . . . . 7 ⊢ ((𝑏 = 𝑥 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · (𝑏↑𝑘)) = ((𝐹‘𝑘) · (𝑥↑𝑘))) |
| 5 | 4 | mpteq2dva 5203 | . . . . . 6 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘)))) |
| 6 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝐹‘𝑘) = (𝐹‘𝑦)) | |
| 7 | oveq2 7398 | . . . . . . . 8 ⊢ (𝑘 = 𝑦 → (𝑥↑𝑘) = (𝑥↑𝑦)) | |
| 8 | 6, 7 | oveq12d 7408 | . . . . . . 7 ⊢ (𝑘 = 𝑦 → ((𝐹‘𝑘) · (𝑥↑𝑘)) = ((𝐹‘𝑦) · (𝑥↑𝑦))) |
| 9 | 8 | cbvmptv 5214 | . . . . . 6 ⊢ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑥↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦))) |
| 10 | 5, 9 | eqtrdi 2781 | . . . . 5 ⊢ (𝑏 = 𝑥 → (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘))) = (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
| 11 | 10 | cbvmptv 5214 | . . . 4 ⊢ (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
| 12 | 1, 11 | eqtri 2753 | . . 3 ⊢ 𝑆 = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℕ0 ↦ ((𝐹‘𝑦) · (𝑥↑𝑦)))) |
| 13 | binomcxp.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 14 | 13 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝐶 ∈ ℂ) |
| 15 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → 𝑗 ∈ ℕ0) | |
| 16 | 14, 15 | bcccl 44335 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑗 ∈ ℕ0) → (𝐶C𝑐𝑗) ∈ ℂ) |
| 17 | binomcxplem.f | . . . 4 ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) | |
| 18 | 16, 17 | fmptd 7089 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝐹:ℕ0⟶ℂ) |
| 19 | binomcxplem.r | . . 3 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
| 20 | fvoveq1 7413 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1))) | |
| 21 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) | |
| 22 | 20, 21 | oveq12d 7408 | . . . . 5 ⊢ (𝑘 = 𝑖 → ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) = ((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖))) |
| 23 | 22 | fveq2d 6865 | . . . 4 ⊢ (𝑘 = 𝑖 → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘))) = (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
| 24 | 23 | cbvmptv 5214 | . . 3 ⊢ (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) = (𝑖 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑖 + 1)) / (𝐹‘𝑖)))) |
| 25 | nn0uz 12842 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 26 | 0nn0 12464 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 27 | 26 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 0 ∈ ℕ0) |
| 28 | 17 | a1i 11 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
| 29 | simpr 484 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → 𝑗 = 𝑖) | |
| 30 | 29 | oveq2d 7406 | . . . . 5 ⊢ ((((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) ∧ 𝑗 = 𝑖) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑖)) |
| 31 | simpr 484 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 32 | ovexd 7425 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ∈ V) | |
| 33 | 28, 30, 31, 32 | fvmptd 6978 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) = (𝐶C𝑐𝑖)) |
| 34 | elfznn0 13588 | . . . . . . 7 ⊢ (𝐶 ∈ (0...(𝑖 − 1)) → 𝐶 ∈ ℕ0) | |
| 35 | 34 | con3i 154 | . . . . . 6 ⊢ (¬ 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
| 36 | 35 | ad2antlr 727 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑖 − 1))) |
| 37 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ) |
| 38 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0) | |
| 39 | 37, 38 | bcc0 44336 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) = 0 ↔ 𝐶 ∈ (0...(𝑖 − 1)))) |
| 40 | 39 | necon3abid 2962 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
| 41 | 40 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → ((𝐶C𝑐𝑖) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑖 − 1)))) |
| 42 | 36, 41 | mpbird 257 | . . . 4 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐶C𝑐𝑖) ≠ 0) |
| 43 | 33, 42 | eqnetrd 2993 | . . 3 ⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) ≠ 0) |
| 44 | binomcxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 45 | binomcxp.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 46 | binomcxp.lt | . . . 4 ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) | |
| 47 | 44, 45, 46, 13, 17 | binomcxplemfrat 44347 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) |
| 48 | ax-1ne0 11144 | . . . 4 ⊢ 1 ≠ 0 | |
| 49 | 48 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 1 ≠ 0) |
| 50 | 12, 18, 19, 24, 25, 27, 43, 47, 49 | radcnvrat 44310 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = (1 / 1)) |
| 51 | 1div1e1 11880 | . 2 ⊢ (1 / 1) = 1 | |
| 52 | 50, 51 | eqtrdi 2781 | 1 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 supcsup 9398 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 ℝ*cxr 11214 < clt 11215 − cmin 11412 / cdiv 11842 ℕ0cn0 12449 ℝ+crp 12958 ...cfz 13475 seqcseq 13973 ↑cexp 14033 abscabs 15207 ⇝ cli 15457 C𝑐cbcc 44332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ioo 13317 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-fac 14246 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-prod 15877 df-fallfac 15980 df-bcc 44333 |
| This theorem is referenced by: binomcxplemdvbinom 44349 binomcxplemnotnn0 44352 |
| Copyright terms: Public domain | W3C validator |