Proof of Theorem mulgnegnn
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nncn 12274 | . . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) | 
| 2 | 1 | negnegd 11611 | . . . . 5
⊢ (𝑁 ∈ ℕ → --𝑁 = 𝑁) | 
| 3 | 2 | adantr 480 | . . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → --𝑁 = 𝑁) | 
| 4 | 3 | fveq2d 6910 | . . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) | 
| 5 | 4 | fveq2d 6910 | . 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁))) | 
| 6 |  | nnnegz 12616 | . . . 4
⊢ (𝑁 ∈ ℕ → -𝑁 ∈
ℤ) | 
| 7 |  | mulg1.b | . . . . 5
⊢ 𝐵 = (Base‘𝐺) | 
| 8 |  | eqid 2737 | . . . . 5
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 9 |  | eqid 2737 | . . . . 5
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 10 |  | mulgnegnn.i | . . . . 5
⊢ 𝐼 = (invg‘𝐺) | 
| 11 |  | mulg1.m | . . . . 5
⊢  · =
(.g‘𝐺) | 
| 12 |  | eqid 2737 | . . . . 5
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | 
| 13 | 7, 8, 9, 10, 11, 12 | mulgval 19089 | . . . 4
⊢ ((-𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))))) | 
| 14 | 6, 13 | sylan 580 | . . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))))) | 
| 15 |  | nnne0 12300 | . . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | 
| 16 |  | negeq0 11563 | . . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (𝑁 = 0 ↔ -𝑁 = 0)) | 
| 17 | 16 | necon3abid 2977 | . . . . . . . 8
⊢ (𝑁 ∈ ℂ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0)) | 
| 18 | 1, 17 | syl 17 | . . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0)) | 
| 19 | 15, 18 | mpbid 232 | . . . . . 6
⊢ (𝑁 ∈ ℕ → ¬
-𝑁 = 0) | 
| 20 | 19 | iffalsed 4536 | . . . . 5
⊢ (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) = if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) | 
| 21 |  | nnre 12273 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) | 
| 22 | 21 | renegcld 11690 | . . . . . . 7
⊢ (𝑁 ∈ ℕ → -𝑁 ∈
ℝ) | 
| 23 |  | nngt0 12297 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) | 
| 24 | 21 | lt0neg2d 11833 | . . . . . . . 8
⊢ (𝑁 ∈ ℕ → (0 <
𝑁 ↔ -𝑁 < 0)) | 
| 25 | 23, 24 | mpbid 232 | . . . . . . 7
⊢ (𝑁 ∈ ℕ → -𝑁 < 0) | 
| 26 |  | 0re 11263 | . . . . . . . 8
⊢ 0 ∈
ℝ | 
| 27 |  | ltnsym 11359 | . . . . . . . 8
⊢ ((-𝑁 ∈ ℝ ∧ 0 ∈
ℝ) → (-𝑁 < 0
→ ¬ 0 < -𝑁)) | 
| 28 | 26, 27 | mpan2 691 | . . . . . . 7
⊢ (-𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 <
-𝑁)) | 
| 29 | 22, 25, 28 | sylc 65 | . . . . . 6
⊢ (𝑁 ∈ ℕ → ¬ 0
< -𝑁) | 
| 30 | 29 | iffalsed 4536 | . . . . 5
⊢ (𝑁 ∈ ℕ → if(0 <
-𝑁,
(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) | 
| 31 | 20, 30 | eqtrd 2777 | . . . 4
⊢ (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) | 
| 32 | 31 | adantr 480 | . . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → if(-𝑁 = 0, (0g‘𝐺), if(0 < -𝑁, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) | 
| 33 | 14, 32 | eqtrd 2777 | . 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘--𝑁))) | 
| 34 | 7, 8, 11, 12 | mulgnn 19093 | . . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) | 
| 35 | 34 | fveq2d 6910 | . 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁))) | 
| 36 | 5, 33, 35 | 3eqtr4d 2787 | 1
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) |