MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnegnn Structured version   Visualization version   GIF version

Theorem mulgnegnn 19080
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnegnn.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgnegnn ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgnegnn
StepHypRef Expression
1 nncn 12274 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21negnegd 11614 . . . . 5 (𝑁 ∈ ℕ → --𝑁 = 𝑁)
32adantr 479 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → --𝑁 = 𝑁)
43fveq2d 6907 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
54fveq2d 6907 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
6 nnnegz 12615 . . . 4 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
7 mulg1.b . . . . 5 𝐵 = (Base‘𝐺)
8 eqid 2726 . . . . 5 (+g𝐺) = (+g𝐺)
9 eqid 2726 . . . . 5 (0g𝐺) = (0g𝐺)
10 mulgnegnn.i . . . . 5 𝐼 = (invg𝐺)
11 mulg1.m . . . . 5 · = (.g𝐺)
12 eqid 2726 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
137, 8, 9, 10, 11, 12mulgval 19067 . . . 4 ((-𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
146, 13sylan 578 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
15 nnne0 12300 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
16 negeq0 11566 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 = 0 ↔ -𝑁 = 0))
1716necon3abid 2967 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
181, 17syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
1915, 18mpbid 231 . . . . . 6 (𝑁 ∈ ℕ → ¬ -𝑁 = 0)
2019iffalsed 4544 . . . . 5 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))))
21 nnre 12273 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221renegcld 11693 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 ∈ ℝ)
23 nngt0 12297 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
2421lt0neg2d 11836 . . . . . . . 8 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ -𝑁 < 0))
2523, 24mpbid 231 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 < 0)
26 0re 11268 . . . . . . . 8 0 ∈ ℝ
27 ltnsym 11364 . . . . . . . 8 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
2826, 27mpan2 689 . . . . . . 7 (-𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
2922, 25, 28sylc 65 . . . . . 6 (𝑁 ∈ ℕ → ¬ 0 < -𝑁)
3029iffalsed 4544 . . . . 5 (𝑁 ∈ ℕ → if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3120, 30eqtrd 2766 . . . 4 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3231adantr 479 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3314, 32eqtrd 2766 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
347, 8, 11, 12mulgnn 19071 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
3534fveq2d 6907 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
365, 33, 353eqtr4d 2776 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  ifcif 4533  {csn 4633   class class class wbr 5155   × cxp 5682  cfv 6556  (class class class)co 7426  cc 11158  cr 11159  0cc0 11160  1c1 11161   < clt 11300  -cneg 11497  cn 12266  cz 12612  seqcseq 14023  Basecbs 17215  +gcplusg 17268  0gc0g 17456  invgcminusg 18931  .gcmg 19063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-n0 12527  df-z 12613  df-uz 12877  df-seq 14024  df-mulg 19064
This theorem is referenced by:  mulgsubcl  19084  mulgneg  19088  mulgneg2  19104  cnfldmulg  21397  tgpmulg  24091  xrsmulgzz  32891  archiabllem1b  33059
  Copyright terms: Public domain W3C validator