MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnegnn Structured version   Visualization version   GIF version

Theorem mulgnegnn 19102
Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnegnn.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
mulgnegnn ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))

Proof of Theorem mulgnegnn
StepHypRef Expression
1 nncn 12274 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
21negnegd 11611 . . . . 5 (𝑁 ∈ ℕ → --𝑁 = 𝑁)
32adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → --𝑁 = 𝑁)
43fveq2d 6910 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
54fveq2d 6910 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
6 nnnegz 12616 . . . 4 (𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
7 mulg1.b . . . . 5 𝐵 = (Base‘𝐺)
8 eqid 2737 . . . . 5 (+g𝐺) = (+g𝐺)
9 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
10 mulgnegnn.i . . . . 5 𝐼 = (invg𝐺)
11 mulg1.m . . . . 5 · = (.g𝐺)
12 eqid 2737 . . . . 5 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
137, 8, 9, 10, 11, 12mulgval 19089 . . . 4 ((-𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
146, 13sylan 580 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))))
15 nnne0 12300 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
16 negeq0 11563 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 = 0 ↔ -𝑁 = 0))
1716necon3abid 2977 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
181, 17syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 ≠ 0 ↔ ¬ -𝑁 = 0))
1915, 18mpbid 232 . . . . . 6 (𝑁 ∈ ℕ → ¬ -𝑁 = 0)
2019iffalsed 4536 . . . . 5 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))))
21 nnre 12273 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2221renegcld 11690 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 ∈ ℝ)
23 nngt0 12297 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
2421lt0neg2d 11833 . . . . . . . 8 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ -𝑁 < 0))
2523, 24mpbid 232 . . . . . . 7 (𝑁 ∈ ℕ → -𝑁 < 0)
26 0re 11263 . . . . . . . 8 0 ∈ ℝ
27 ltnsym 11359 . . . . . . . 8 ((-𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑁 < 0 → ¬ 0 < -𝑁))
2826, 27mpan2 691 . . . . . . 7 (-𝑁 ∈ ℝ → (-𝑁 < 0 → ¬ 0 < -𝑁))
2922, 25, 28sylc 65 . . . . . 6 (𝑁 ∈ ℕ → ¬ 0 < -𝑁)
3029iffalsed 4536 . . . . 5 (𝑁 ∈ ℕ → if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3120, 30eqtrd 2777 . . . 4 (𝑁 ∈ ℕ → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3231adantr 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → if(-𝑁 = 0, (0g𝐺), if(0 < -𝑁, (seq1((+g𝐺), (ℕ × {𝑋}))‘-𝑁), (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
3314, 32eqtrd 2777 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘--𝑁)))
347, 8, 11, 12mulgnn 19093 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
3534fveq2d 6910 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝐼‘(𝑁 · 𝑋)) = (𝐼‘(seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁)))
365, 33, 353eqtr4d 2787 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  ifcif 4525  {csn 4626   class class class wbr 5143   × cxp 5683  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   < clt 11295  -cneg 11493  cn 12266  cz 12613  seqcseq 14042  Basecbs 17247  +gcplusg 17297  0gc0g 17484  invgcminusg 18952  .gcmg 19085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-mulg 19086
This theorem is referenced by:  mulgsubcl  19106  mulgneg  19110  mulgneg2  19126  cnfldmulg  21416  tgpmulg  24101  xrsmulgzz  33011  archiabllem1b  33199
  Copyright terms: Public domain W3C validator