Proof of Theorem binomcxplemfrat
Step | Hyp | Ref
| Expression |
1 | | binomcxp.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
2 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈
ℂ) |
3 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
4 | 2, 3 | bccp1k 41912 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) = ((𝐶C𝑐𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1)))) |
5 | | binomcxplem.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) |
6 | 5 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))) |
7 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1)) |
8 | 7 | oveq2d 7284 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → (𝐶C𝑐𝑗) = (𝐶C𝑐(𝑘 + 1))) |
9 | | 1nn0 12232 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
10 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 1 ∈
ℕ0) |
11 | 3, 10 | nn0addcld 12280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈
ℕ0) |
12 | | ovexd 7303 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) ∈
V) |
13 | 6, 8, 11, 12 | fvmptd 6876 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = (𝐶C𝑐(𝑘 + 1))) |
14 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘) |
15 | 14 | oveq2d 7284 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘)) |
16 | | ovexd 7303 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ V) |
17 | 6, 15, 3, 16 | fvmptd 6876 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = (𝐶C𝑐𝑘)) |
18 | 17 | oveq1d 7283 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1))) = ((𝐶C𝑐𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1)))) |
19 | 4, 13, 18 | 3eqtr4d 2789 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹‘𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1)))) |
20 | 19 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘(𝑘 + 1)) = ((𝐹‘𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1)))) |
21 | 20 | eqcomd 2745 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐹‘𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1))) |
22 | 2, 3 | bcccl 41910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈
ℂ) |
23 | 17, 22 | eqeltrd 2840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
24 | 23 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) ∈
ℂ) |
25 | 2 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝐶 ∈
ℂ) |
26 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
27 | 26 | nn0cnd 12278 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℂ) |
28 | 25, 27 | subcld 11315 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶 − 𝑘) ∈
ℂ) |
29 | | 1cnd 10954 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ 1 ∈ ℂ) |
30 | 27, 29 | addcld 10978 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑘 + 1) ∈
ℂ) |
31 | | nn0p1nn 12255 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
32 | 31 | nnne0d 12006 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ≠
0) |
33 | 32 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝑘 + 1) ≠
0) |
34 | 28, 30, 33 | divcld 11734 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐶 − 𝑘) / (𝑘 + 1)) ∈ ℂ) |
35 | 24, 34 | mulcld 10979 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐹‘𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1))) ∈ ℂ) |
36 | 20, 35 | eqeltrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘(𝑘 + 1)) ∈
ℂ) |
37 | 17 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) = (𝐶C𝑐𝑘)) |
38 | | elfznn0 13331 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (0...(𝑘 − 1)) → 𝐶 ∈
ℕ0) |
39 | 38 | con3i 154 |
. . . . . . . . 9
⊢ (¬
𝐶 ∈
ℕ0 → ¬ 𝐶 ∈ (0...(𝑘 − 1))) |
40 | 39 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ¬ 𝐶 ∈
(0...(𝑘 −
1))) |
41 | 25, 26 | bcc0 41911 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1)))) |
42 | 41 | necon3abid 2981 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐶C𝑐𝑘) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑘 − 1)))) |
43 | 40, 42 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐶C𝑐𝑘) ≠ 0) |
44 | 37, 43 | eqnetrd 3012 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) ≠ 0) |
45 | 36, 24, 34, 44 | divmuld 11756 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) = ((𝐶 − 𝑘) / (𝑘 + 1)) ↔ ((𝐹‘𝑘) · ((𝐶 − 𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1)))) |
46 | 21, 45 | mpbird 256 |
. . . 4
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) = ((𝐶 − 𝑘) / (𝑘 + 1))) |
47 | 46 | fveq2d 6772 |
. . 3
⊢ (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0)
→ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘))) = (abs‘((𝐶 − 𝑘) / (𝑘 + 1)))) |
48 | 47 | mpteq2dva 5178 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) = (𝑘 ∈ ℕ0 ↦
(abs‘((𝐶 −
𝑘) / (𝑘 + 1))))) |
49 | | binomcxp.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℝ+) |
50 | | binomcxp.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
51 | | binomcxp.lt |
. . . 4
⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) |
52 | 49, 50, 51, 1 | binomcxplemrat 41921 |
. . 3
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦
(abs‘((𝐶 −
𝑘) / (𝑘 + 1)))) ⇝ 1) |
53 | 52 | adantr 480 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ (abs‘((𝐶
− 𝑘) / (𝑘 + 1)))) ⇝
1) |
54 | 48, 53 | eqbrtrd 5100 |
1
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0
↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) |