Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemfrat Structured version   Visualization version   GIF version

Theorem binomcxplemfrat 44333
Description: Lemma for binomcxp 44339. binomcxplemrat 44332 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
Assertion
Ref Expression
binomcxplemfrat ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Distinct variable groups:   𝑗,𝑘,𝜑   𝐶,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑗,𝑘)

Proof of Theorem binomcxplemfrat
StepHypRef Expression
1 binomcxp.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
21adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
3 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
42, 3bccp1k 44323 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
5 binomcxplem.f . . . . . . . . . 10 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
65a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
7 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
87oveq2d 7385 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → (𝐶C𝑐𝑗) = (𝐶C𝑐(𝑘 + 1)))
9 1nn0 12434 . . . . . . . . . . 11 1 ∈ ℕ0
109a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
113, 10nn0addcld 12483 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
12 ovexd 7404 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) ∈ V)
136, 8, 11, 12fvmptd 6957 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = (𝐶C𝑐(𝑘 + 1)))
14 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
1514oveq2d 7385 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
16 ovexd 7404 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ V)
176, 15, 3, 16fvmptd 6957 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
1817oveq1d 7384 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
194, 13, 183eqtr4d 2774 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2019adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2120eqcomd 2735 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222, 3bcccl 44321 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
2317, 22eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
2423adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
252adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
26 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
2726nn0cnd 12481 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2825, 27subcld 11509 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
29 1cnd 11145 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
3027, 29addcld 11169 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
31 nn0p1nn 12457 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3231nnne0d 12212 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
3332adantl 481 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
3428, 30, 33divcld 11934 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶𝑘) / (𝑘 + 1)) ∈ ℂ)
3524, 34mulcld 11170 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) ∈ ℂ)
3620, 35eqeltrd 2828 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3717adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
38 elfznn0 13557 . . . . . . . . . 10 (𝐶 ∈ (0...(𝑘 − 1)) → 𝐶 ∈ ℕ0)
3938con3i 154 . . . . . . . . 9 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4039ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4125, 26bcc0 44322 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
4241necon3abid 2961 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑘 − 1))))
4340, 42mpbird 257 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ≠ 0)
4437, 43eqnetrd 2992 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ≠ 0)
4536, 24, 34, 44divmuld 11956 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)) ↔ ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1))))
4621, 45mpbird 257 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)))
4746fveq2d 6844 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐶𝑘) / (𝑘 + 1))))
4847mpteq2dva 5195 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
49 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
50 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
51 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
5249, 50, 51, 1binomcxplemrat 44332 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5352adantr 480 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5448, 53eqbrtrd 5124 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381   / cdiv 11811  0cn0 12418  +crp 12927  ...cfz 13444  abscabs 15176  cli 15426  C𝑐cbcc 44318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-prod 15846  df-fallfac 15949  df-bcc 44319
This theorem is referenced by:  binomcxplemradcnv  44334
  Copyright terms: Public domain W3C validator