Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemfrat Structured version   Visualization version   GIF version

Theorem binomcxplemfrat 44328
Description: Lemma for binomcxp 44334. binomcxplemrat 44327 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
Assertion
Ref Expression
binomcxplemfrat ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Distinct variable groups:   𝑗,𝑘,𝜑   𝐶,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑗,𝑘)

Proof of Theorem binomcxplemfrat
StepHypRef Expression
1 binomcxp.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
21adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
3 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
42, 3bccp1k 44318 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
5 binomcxplem.f . . . . . . . . . 10 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
65a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
7 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
87oveq2d 7365 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → (𝐶C𝑐𝑗) = (𝐶C𝑐(𝑘 + 1)))
9 1nn0 12400 . . . . . . . . . . 11 1 ∈ ℕ0
109a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
113, 10nn0addcld 12449 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
12 ovexd 7384 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) ∈ V)
136, 8, 11, 12fvmptd 6937 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = (𝐶C𝑐(𝑘 + 1)))
14 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
1514oveq2d 7365 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
16 ovexd 7384 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ V)
176, 15, 3, 16fvmptd 6937 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
1817oveq1d 7364 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
194, 13, 183eqtr4d 2774 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2019adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2120eqcomd 2735 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222, 3bcccl 44316 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
2317, 22eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
2423adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
252adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
26 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
2726nn0cnd 12447 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2825, 27subcld 11475 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
29 1cnd 11110 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
3027, 29addcld 11134 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
31 nn0p1nn 12423 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3231nnne0d 12178 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
3332adantl 481 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
3428, 30, 33divcld 11900 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶𝑘) / (𝑘 + 1)) ∈ ℂ)
3524, 34mulcld 11135 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) ∈ ℂ)
3620, 35eqeltrd 2828 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3717adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
38 elfznn0 13523 . . . . . . . . . 10 (𝐶 ∈ (0...(𝑘 − 1)) → 𝐶 ∈ ℕ0)
3938con3i 154 . . . . . . . . 9 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4039ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4125, 26bcc0 44317 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
4241necon3abid 2961 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑘 − 1))))
4340, 42mpbird 257 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ≠ 0)
4437, 43eqnetrd 2992 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ≠ 0)
4536, 24, 34, 44divmuld 11922 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)) ↔ ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1))))
4621, 45mpbird 257 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)))
4746fveq2d 6826 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐶𝑘) / (𝑘 + 1))))
4847mpteq2dva 5185 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
49 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
50 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
51 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
5249, 50, 51, 1binomcxplemrat 44327 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5352adantr 480 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5448, 53eqbrtrd 5114 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cmin 11347   / cdiv 11777  0cn0 12384  +crp 12893  ...cfz 13410  abscabs 15141  cli 15391  C𝑐cbcc 44313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-prod 15811  df-fallfac 15914  df-bcc 44314
This theorem is referenced by:  binomcxplemradcnv  44329
  Copyright terms: Public domain W3C validator