Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemfrat Structured version   Visualization version   GIF version

Theorem binomcxplemfrat 44340
Description: Lemma for binomcxp 44346. binomcxplemrat 44339 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
Assertion
Ref Expression
binomcxplemfrat ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Distinct variable groups:   𝑗,𝑘,𝜑   𝐶,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑗,𝑘)

Proof of Theorem binomcxplemfrat
StepHypRef Expression
1 binomcxp.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
21adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
3 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
42, 3bccp1k 44330 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
5 binomcxplem.f . . . . . . . . . 10 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
65a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
7 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
87oveq2d 7403 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → (𝐶C𝑐𝑗) = (𝐶C𝑐(𝑘 + 1)))
9 1nn0 12458 . . . . . . . . . . 11 1 ∈ ℕ0
109a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
113, 10nn0addcld 12507 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
12 ovexd 7422 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) ∈ V)
136, 8, 11, 12fvmptd 6975 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = (𝐶C𝑐(𝑘 + 1)))
14 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
1514oveq2d 7403 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
16 ovexd 7422 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ V)
176, 15, 3, 16fvmptd 6975 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
1817oveq1d 7402 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
194, 13, 183eqtr4d 2774 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2019adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2120eqcomd 2735 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222, 3bcccl 44328 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
2317, 22eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
2423adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
252adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
26 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
2726nn0cnd 12505 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2825, 27subcld 11533 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
29 1cnd 11169 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
3027, 29addcld 11193 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
31 nn0p1nn 12481 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3231nnne0d 12236 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
3332adantl 481 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
3428, 30, 33divcld 11958 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶𝑘) / (𝑘 + 1)) ∈ ℂ)
3524, 34mulcld 11194 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) ∈ ℂ)
3620, 35eqeltrd 2828 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3717adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
38 elfznn0 13581 . . . . . . . . . 10 (𝐶 ∈ (0...(𝑘 − 1)) → 𝐶 ∈ ℕ0)
3938con3i 154 . . . . . . . . 9 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4039ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4125, 26bcc0 44329 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
4241necon3abid 2961 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑘 − 1))))
4340, 42mpbird 257 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ≠ 0)
4437, 43eqnetrd 2992 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ≠ 0)
4536, 24, 34, 44divmuld 11980 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)) ↔ ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1))))
4621, 45mpbird 257 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)))
4746fveq2d 6862 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐶𝑘) / (𝑘 + 1))))
4847mpteq2dva 5200 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
49 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
50 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
51 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
5249, 50, 51, 1binomcxplemrat 44339 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5352adantr 480 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5448, 53eqbrtrd 5129 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405   / cdiv 11835  0cn0 12442  +crp 12951  ...cfz 13468  abscabs 15200  cli 15450  C𝑐cbcc 44325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-prod 15870  df-fallfac 15973  df-bcc 44326
This theorem is referenced by:  binomcxplemradcnv  44341
  Copyright terms: Public domain W3C validator