Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemfrat Structured version   Visualization version   GIF version

Theorem binomcxplemfrat 41594
Description: Lemma for binomcxp 41600. binomcxplemrat 41593 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
Assertion
Ref Expression
binomcxplemfrat ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Distinct variable groups:   𝑗,𝑘,𝜑   𝐶,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑗,𝑘)

Proof of Theorem binomcxplemfrat
StepHypRef Expression
1 binomcxp.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
21adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
3 simpr 488 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
42, 3bccp1k 41584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
5 binomcxplem.f . . . . . . . . . 10 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
65a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
7 simpr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
87oveq2d 7218 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → (𝐶C𝑐𝑗) = (𝐶C𝑐(𝑘 + 1)))
9 1nn0 12089 . . . . . . . . . . 11 1 ∈ ℕ0
109a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
113, 10nn0addcld 12137 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
12 ovexd 7237 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) ∈ V)
136, 8, 11, 12fvmptd 6814 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = (𝐶C𝑐(𝑘 + 1)))
14 simpr 488 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
1514oveq2d 7218 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
16 ovexd 7237 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ V)
176, 15, 3, 16fvmptd 6814 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
1817oveq1d 7217 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
194, 13, 183eqtr4d 2784 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2019adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2120eqcomd 2740 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222, 3bcccl 41582 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
2317, 22eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
2423adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
252adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
26 simpr 488 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
2726nn0cnd 12135 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2825, 27subcld 11172 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
29 1cnd 10811 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
3027, 29addcld 10835 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
31 nn0p1nn 12112 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3231nnne0d 11863 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
3332adantl 485 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
3428, 30, 33divcld 11591 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶𝑘) / (𝑘 + 1)) ∈ ℂ)
3524, 34mulcld 10836 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) ∈ ℂ)
3620, 35eqeltrd 2834 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3717adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
38 elfznn0 13188 . . . . . . . . . 10 (𝐶 ∈ (0...(𝑘 − 1)) → 𝐶 ∈ ℕ0)
3938con3i 157 . . . . . . . . 9 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4039ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4125, 26bcc0 41583 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
4241necon3abid 2971 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑘 − 1))))
4340, 42mpbird 260 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ≠ 0)
4437, 43eqnetrd 3002 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ≠ 0)
4536, 24, 34, 44divmuld 11613 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)) ↔ ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1))))
4621, 45mpbird 260 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)))
4746fveq2d 6710 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐶𝑘) / (𝑘 + 1))))
4847mpteq2dva 5139 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
49 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
50 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
51 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
5249, 50, 51, 1binomcxplemrat 41593 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5352adantr 484 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5448, 53eqbrtrd 5065 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2935  Vcvv 3401   class class class wbr 5043  cmpt 5124  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   · cmul 10717   < clt 10850  cmin 11045   / cdiv 11472  0cn0 12073  +crp 12569  ...cfz 13078  abscabs 14780  cli 15028  C𝑐cbcc 41579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-fac 13823  df-hash 13880  df-shft 14613  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-rlim 15033  df-prod 15449  df-fallfac 15550  df-bcc 41580
This theorem is referenced by:  binomcxplemradcnv  41595
  Copyright terms: Public domain W3C validator