Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  binomcxplemfrat Structured version   Visualization version   GIF version

Theorem binomcxplemfrat 44347
Description: Lemma for binomcxp 44353. binomcxplemrat 44346 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.)
Hypotheses
Ref Expression
binomcxp.a (𝜑𝐴 ∈ ℝ+)
binomcxp.b (𝜑𝐵 ∈ ℝ)
binomcxp.lt (𝜑 → (abs‘𝐵) < (abs‘𝐴))
binomcxp.c (𝜑𝐶 ∈ ℂ)
binomcxplem.f 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
Assertion
Ref Expression
binomcxplemfrat ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Distinct variable groups:   𝑗,𝑘,𝜑   𝐶,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐵(𝑗,𝑘)   𝐹(𝑗,𝑘)

Proof of Theorem binomcxplemfrat
StepHypRef Expression
1 binomcxp.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
21adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
3 simpr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
42, 3bccp1k 44337 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
5 binomcxplem.f . . . . . . . . . 10 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗))
65a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)))
7 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → 𝑗 = (𝑘 + 1))
87oveq2d 7406 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = (𝑘 + 1)) → (𝐶C𝑐𝑗) = (𝐶C𝑐(𝑘 + 1)))
9 1nn0 12465 . . . . . . . . . . 11 1 ∈ ℕ0
109a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
113, 10nn0addcld 12514 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
12 ovexd 7425 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐(𝑘 + 1)) ∈ V)
136, 8, 11, 12fvmptd 6978 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = (𝐶C𝑐(𝑘 + 1)))
14 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → 𝑗 = 𝑘)
1514oveq2d 7406 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 = 𝑘) → (𝐶C𝑐𝑗) = (𝐶C𝑐𝑘))
16 ovexd 7425 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ V)
176, 15, 3, 16fvmptd 6978 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
1817oveq1d 7405 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = ((𝐶C𝑐𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
194, 13, 183eqtr4d 2775 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2019adantlr 715 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) = ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))))
2120eqcomd 2736 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
222, 3bcccl 44335 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ∈ ℂ)
2317, 22eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
2423adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
252adantlr 715 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝐶 ∈ ℂ)
26 simpr 484 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
2726nn0cnd 12512 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℂ)
2825, 27subcld 11540 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶𝑘) ∈ ℂ)
29 1cnd 11176 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℂ)
3027, 29addcld 11200 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
31 nn0p1nn 12488 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
3231nnne0d 12243 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑘 + 1) ≠ 0)
3332adantl 481 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
3428, 30, 33divcld 11965 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶𝑘) / (𝑘 + 1)) ∈ ℂ)
3524, 34mulcld 11201 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) ∈ ℂ)
3620, 35eqeltrd 2829 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3717adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐶C𝑐𝑘))
38 elfznn0 13588 . . . . . . . . . 10 (𝐶 ∈ (0...(𝑘 − 1)) → 𝐶 ∈ ℕ0)
3938con3i 154 . . . . . . . . 9 𝐶 ∈ ℕ0 → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4039ad2antlr 727 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ¬ 𝐶 ∈ (0...(𝑘 − 1)))
4125, 26bcc0 44336 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) = 0 ↔ 𝐶 ∈ (0...(𝑘 − 1))))
4241necon3abid 2962 . . . . . . . 8 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐶C𝑐𝑘) ≠ 0 ↔ ¬ 𝐶 ∈ (0...(𝑘 − 1))))
4340, 42mpbird 257 . . . . . . 7 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐶C𝑐𝑘) ≠ 0)
4437, 43eqnetrd 2993 . . . . . 6 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) ≠ 0)
4536, 24, 34, 44divmuld 11987 . . . . 5 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)) ↔ ((𝐹𝑘) · ((𝐶𝑘) / (𝑘 + 1))) = (𝐹‘(𝑘 + 1))))
4621, 45mpbird 257 . . . 4 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) = ((𝐶𝑘) / (𝑘 + 1)))
4746fveq2d 6865 . . 3 (((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = (abs‘((𝐶𝑘) / (𝑘 + 1))))
4847mpteq2dva 5203 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))))
49 binomcxp.a . . . 4 (𝜑𝐴 ∈ ℝ+)
50 binomcxp.b . . . 4 (𝜑𝐵 ∈ ℝ)
51 binomcxp.lt . . . 4 (𝜑 → (abs‘𝐵) < (abs‘𝐴))
5249, 50, 51, 1binomcxplemrat 44346 . . 3 (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5352adantr 480 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶𝑘) / (𝑘 + 1)))) ⇝ 1)
5448, 53eqbrtrd 5132 1 ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412   / cdiv 11842  0cn0 12449  +crp 12958  ...cfz 13475  abscabs 15207  cli 15457  C𝑐cbcc 44332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-prod 15877  df-fallfac 15980  df-bcc 44333
This theorem is referenced by:  binomcxplemradcnv  44348
  Copyright terms: Public domain W3C validator