Proof of Theorem cdlemb3
Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simpl2 1191 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | cdlemg5.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
4 | | cdlemg5.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
5 | | cdlemg5.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdlemg5.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
7 | 3, 4, 5, 6 | cdlemg5 38619 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊)) |
8 | 1, 2, 7 | syl2anc 584 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄) → ∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊)) |
9 | | ancom 461 |
. . . . . 6
⊢ ((𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊) ↔ (¬ 𝑟 ≤ 𝑊 ∧ 𝑃 ≠ 𝑟)) |
10 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑃 = 𝑟 ↔ 𝑟 = 𝑃) |
11 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → 𝑃 = 𝑄) |
12 | 11 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑃 ∨ 𝑃) = (𝑃 ∨ 𝑄)) |
13 | | simp11l 1283 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ HL) |
14 | | simp12l 1285 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
15 | 4, 5 | hlatjidm 37383 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
16 | 13, 14, 15 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑃 ∨ 𝑃) = 𝑃) |
17 | 12, 16 | eqtr3d 2780 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑃 ∨ 𝑄) = 𝑃) |
18 | 17 | breq2d 5086 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑟 ≤ (𝑃 ∨ 𝑄) ↔ 𝑟 ≤ 𝑃)) |
19 | | hlatl 37374 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
20 | 13, 19 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → 𝐾 ∈ AtLat) |
21 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐴) |
22 | 3, 5 | atcmp 37325 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ AtLat ∧ 𝑟 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑟 ≤ 𝑃 ↔ 𝑟 = 𝑃)) |
23 | 20, 21, 14, 22 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑟 ≤ 𝑃 ↔ 𝑟 = 𝑃)) |
24 | 18, 23 | bitr2d 279 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑟 = 𝑃 ↔ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
25 | 10, 24 | syl5bb 283 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑃 = 𝑟 ↔ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
26 | 25 | necon3abid 2980 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → (𝑃 ≠ 𝑟 ↔ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
27 | 26 | anbi2d 629 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → ((¬ 𝑟 ≤ 𝑊 ∧ 𝑃 ≠ 𝑟) ↔ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)))) |
28 | 9, 27 | syl5bb 283 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄 ∧ 𝑟 ∈ 𝐴) → ((𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊) ↔ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)))) |
29 | 28 | 3expa 1117 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄) ∧ 𝑟 ∈ 𝐴) → ((𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊) ↔ (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)))) |
30 | 29 | rexbidva 3225 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄) → (∃𝑟 ∈ 𝐴 (𝑃 ≠ 𝑟 ∧ ¬ 𝑟 ≤ 𝑊) ↔ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄)))) |
31 | 8, 30 | mpbid 231 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 = 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
32 | | simpl1 1190 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
33 | | simpl2 1191 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
34 | | simpl3 1192 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
35 | | simpr 485 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → 𝑃 ≠ 𝑄) |
36 | 3, 4, 5, 6 | cdlemb2 38055 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
37 | 32, 33, 34, 35, 36 | syl121anc 1374 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |
38 | 31, 37 | pm2.61dane 3032 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ ¬ 𝑟 ≤ (𝑃 ∨ 𝑄))) |