Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb3 Structured version   Visualization version   GIF version

Theorem cdlemb3 39780
Description: Given two atoms not under the fiducial co-atom π‘Š, there is a third. Lemma B in [Crawley] p. 112. TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 39179? Then replace cdlemb2 39215 with it. This is a more general version of cdlemb2 39215 without 𝑃 β‰  𝑄 condition. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
cdlemg5.l ≀ = (leβ€˜πΎ)
cdlemg5.j ∨ = (joinβ€˜πΎ)
cdlemg5.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg5.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
cdlemb3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Distinct variable groups:   𝐴,π‘Ÿ   𝐻,π‘Ÿ   𝐾,π‘Ÿ   ≀ ,π‘Ÿ   𝑃,π‘Ÿ   π‘Š,π‘Ÿ   ∨ ,π‘Ÿ   𝑄,π‘Ÿ

Proof of Theorem cdlemb3
StepHypRef Expression
1 simpl1 1191 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpl2 1192 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 cdlemg5.l . . . . 5 ≀ = (leβ€˜πΎ)
4 cdlemg5.j . . . . 5 ∨ = (joinβ€˜πΎ)
5 cdlemg5.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
6 cdlemg5.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
73, 4, 5, 6cdlemg5 39779 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (𝑃 β‰  π‘Ÿ ∧ Β¬ π‘Ÿ ≀ π‘Š))
81, 2, 7syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (𝑃 β‰  π‘Ÿ ∧ Β¬ π‘Ÿ ≀ π‘Š))
9 ancom 461 . . . . . 6 ((𝑃 β‰  π‘Ÿ ∧ Β¬ π‘Ÿ ≀ π‘Š) ↔ (Β¬ π‘Ÿ ≀ π‘Š ∧ 𝑃 β‰  π‘Ÿ))
10 eqcom 2739 . . . . . . . . 9 (𝑃 = π‘Ÿ ↔ π‘Ÿ = 𝑃)
11 simp2 1137 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ 𝑃 = 𝑄)
1211oveq2d 7427 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑃 ∨ 𝑃) = (𝑃 ∨ 𝑄))
13 simp11l 1284 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ 𝐾 ∈ HL)
14 simp12l 1286 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ 𝑃 ∈ 𝐴)
154, 5hlatjidm 38542 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) β†’ (𝑃 ∨ 𝑃) = 𝑃)
1613, 14, 15syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑃 ∨ 𝑃) = 𝑃)
1712, 16eqtr3d 2774 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) = 𝑃)
1817breq2d 5160 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (π‘Ÿ ≀ (𝑃 ∨ 𝑄) ↔ π‘Ÿ ≀ 𝑃))
19 hlatl 38533 . . . . . . . . . . . 12 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
2013, 19syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ 𝐾 ∈ AtLat)
21 simp3 1138 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ π‘Ÿ ∈ 𝐴)
223, 5atcmp 38484 . . . . . . . . . . 11 ((𝐾 ∈ AtLat ∧ π‘Ÿ ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) β†’ (π‘Ÿ ≀ 𝑃 ↔ π‘Ÿ = 𝑃))
2320, 21, 14, 22syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (π‘Ÿ ≀ 𝑃 ↔ π‘Ÿ = 𝑃))
2418, 23bitr2d 279 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (π‘Ÿ = 𝑃 ↔ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
2510, 24bitrid 282 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑃 = π‘Ÿ ↔ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
2625necon3abid 2977 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ (𝑃 β‰  π‘Ÿ ↔ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
2726anbi2d 629 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ ((Β¬ π‘Ÿ ≀ π‘Š ∧ 𝑃 β‰  π‘Ÿ) ↔ (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))
289, 27bitrid 282 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄 ∧ π‘Ÿ ∈ 𝐴) β†’ ((𝑃 β‰  π‘Ÿ ∧ Β¬ π‘Ÿ ≀ π‘Š) ↔ (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))
29283expa 1118 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) ∧ π‘Ÿ ∈ 𝐴) β†’ ((𝑃 β‰  π‘Ÿ ∧ Β¬ π‘Ÿ ≀ π‘Š) ↔ (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))
3029rexbidva 3176 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ (βˆƒπ‘Ÿ ∈ 𝐴 (𝑃 β‰  π‘Ÿ ∧ Β¬ π‘Ÿ ≀ π‘Š) ↔ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄))))
318, 30mpbid 231 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 = 𝑄) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
32 simpl1 1191 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
33 simpl2 1192 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
34 simpl3 1193 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
35 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 β‰  𝑄)
363, 4, 5, 6cdlemb2 39215 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
3732, 33, 34, 35, 36syl121anc 1375 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
3831, 37pm2.61dane 3029 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ βˆƒπ‘Ÿ ∈ 𝐴 (Β¬ π‘Ÿ ≀ π‘Š ∧ Β¬ π‘Ÿ ≀ (𝑃 ∨ 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  lecple 17208  joincjn 18268  Atomscatm 38436  AtLatcal 38437  HLchlt 38523  LHypclh 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-lhyp 39162
This theorem is referenced by:  cdlemg6e  39796
  Copyright terms: Public domain W3C validator