![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gcdn0gt0 | Structured version Visualization version GIF version |
Description: The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
gcdn0gt0 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ 0 < (𝑀 gcd 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcl 15688 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | |
2 | 0re 10492 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | nn0re 11756 | . . . 4 ⊢ ((𝑀 gcd 𝑁) ∈ ℕ0 → (𝑀 gcd 𝑁) ∈ ℝ) | |
4 | nn0ge0 11772 | . . . 4 ⊢ ((𝑀 gcd 𝑁) ∈ ℕ0 → 0 ≤ (𝑀 gcd 𝑁)) | |
5 | leltne 10579 | . . . 4 ⊢ ((0 ∈ ℝ ∧ (𝑀 gcd 𝑁) ∈ ℝ ∧ 0 ≤ (𝑀 gcd 𝑁)) → (0 < (𝑀 gcd 𝑁) ↔ (𝑀 gcd 𝑁) ≠ 0)) | |
6 | 2, 3, 4, 5 | mp3an2i 1458 | . . 3 ⊢ ((𝑀 gcd 𝑁) ∈ ℕ0 → (0 < (𝑀 gcd 𝑁) ↔ (𝑀 gcd 𝑁) ≠ 0)) |
7 | 1, 6 | syl 17 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < (𝑀 gcd 𝑁) ↔ (𝑀 gcd 𝑁) ≠ 0)) |
8 | gcdeq0 15698 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = 0 ↔ (𝑀 = 0 ∧ 𝑁 = 0))) | |
9 | 8 | necon3abid 3019 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ≠ 0 ↔ ¬ (𝑀 = 0 ∧ 𝑁 = 0))) |
10 | 7, 9 | bitr2d 281 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ 0 < (𝑀 gcd 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ≠ wne 2983 class class class wbr 4964 (class class class)co 7019 ℝcr 10385 0cc0 10386 < clt 10524 ≤ cle 10525 ℕ0cn0 11747 ℤcz 11831 gcd cgcd 15676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 ax-pre-sup 10464 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-sup 8755 df-inf 8756 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-div 11148 df-nn 11489 df-2 11550 df-3 11551 df-n0 11748 df-z 11832 df-uz 12094 df-rp 12240 df-seq 13220 df-exp 13280 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-dvds 15441 df-gcd 15677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |