MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcobrOLD Structured version   Visualization version   GIF version

Theorem dvcobrOLD 25921
Description: Obsolete version of dvcobr 25920 as of 10-Apr-2025. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvco.f (𝜑𝐹:𝑋⟶ℂ)
dvco.x (𝜑𝑋𝑆)
dvco.g (𝜑𝐺:𝑌𝑋)
dvco.y (𝜑𝑌𝑇)
dvcobr.s (𝜑𝑆 ⊆ ℂ)
dvcobr.t (𝜑𝑇 ⊆ ℂ)
dvco.bf (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
dvco.bg (𝜑𝐶(𝑇 D 𝐺)𝐿)
dvco.j 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
dvcobrOLD (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))

Proof of Theorem dvcobrOLD
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4 (𝜑𝐶(𝑇 D 𝐺)𝐿)
2 eqid 2734 . . . . 5 (𝐽t 𝑇) = (𝐽t 𝑇)
3 dvco.j . . . . 5 𝐽 = (TopOpen‘ℂfld)
4 eqid 2734 . . . . 5 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvcobr.t . . . . 5 (𝜑𝑇 ⊆ ℂ)
6 dvco.g . . . . . 6 (𝜑𝐺:𝑌𝑋)
7 dvco.x . . . . . . 7 (𝜑𝑋𝑆)
8 dvcobr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
97, 8sstrd 3974 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
106, 9fssd 6733 . . . . 5 (𝜑𝐺:𝑌⟶ℂ)
11 dvco.y . . . . 5 (𝜑𝑌𝑇)
122, 3, 4, 5, 10, 11eldv 25870 . . . 4 (𝜑 → (𝐶(𝑇 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
131, 12mpbid 232 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1413simpld 494 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌))
15 dvco.bf . . . . . . 7 (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
16 dvco.f . . . . . . . 8 (𝜑𝐹:𝑋⟶ℂ)
178, 16, 7dvcl 25871 . . . . . . 7 ((𝜑 ∧ (𝐺𝐶)(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
1815, 17mpdan 687 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1918ad2antrr 726 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → 𝐾 ∈ ℂ)
2016adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐹:𝑋⟶ℂ)
21 eldifi 4111 . . . . . . . . . 10 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝑌)
22 ffvelcdm 7081 . . . . . . . . . 10 ((𝐺:𝑌𝑋𝑧𝑌) → (𝐺𝑧) ∈ 𝑋)
236, 21, 22syl2an 596 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ 𝑋)
2420, 23ffvelcdmd 7085 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
2524adantr 480 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
266adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐺:𝑌𝑋)
275, 10, 11dvbss 25873 . . . . . . . . . . . 12 (𝜑 → dom (𝑇 D 𝐺) ⊆ 𝑌)
28 reldv 25842 . . . . . . . . . . . . 13 Rel (𝑇 D 𝐺)
29 releldm 5935 . . . . . . . . . . . . 13 ((Rel (𝑇 D 𝐺) ∧ 𝐶(𝑇 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑇 D 𝐺))
3028, 1, 29sylancr 587 . . . . . . . . . . . 12 (𝜑𝐶 ∈ dom (𝑇 D 𝐺))
3127, 30sseldd 3964 . . . . . . . . . . 11 (𝜑𝐶𝑌)
3231adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶𝑌)
3326, 32ffvelcdmd 7085 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ 𝑋)
3420, 33ffvelcdmd 7085 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3534adantr 480 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3625, 35subcld 11602 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) ∈ ℂ)
3710ad2antrr 726 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐺:𝑌⟶ℂ)
3821ad2antlr 727 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝑧𝑌)
3937, 38ffvelcdmd 7085 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝑧) ∈ ℂ)
4031ad2antrr 726 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → 𝐶𝑌)
4137, 40ffvelcdmd 7085 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝐺𝐶) ∈ ℂ)
4239, 41subcld 11602 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
43 simpr 484 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ¬ (𝐺𝑧) = (𝐺𝐶))
4439, 41subeq0ad 11612 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
4544necon3abid 2967 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) ≠ 0 ↔ ¬ (𝐺𝑧) = (𝐺𝐶)))
4643, 45mpbird 257 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) ≠ 0)
4736, 42, 46divcld 12025 . . . . 5 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) ∈ ℂ)
4819, 47ifclda 4541 . . . 4 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) ∈ ℂ)
4911, 5sstrd 3974 . . . . 5 (𝜑𝑌 ⊆ ℂ)
5010, 49, 31dvlem 25868 . . . 4 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
51 ssidd 3987 . . . 4 (𝜑 → ℂ ⊆ ℂ)
523cnfldtopon 24740 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
53 txtopon 23546 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
5452, 52, 53mp2an 692 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
5554toponrestid 22876 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
5623anim1i 615 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
57 eldifsn 4766 . . . . . . 7 ((𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}) ↔ ((𝐺𝑧) ∈ 𝑋 ∧ (𝐺𝑧) ≠ (𝐺𝐶)))
5856, 57sylibr 234 . . . . . 6 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) ≠ (𝐺𝐶)) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
5958anasss 466 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) ≠ (𝐺𝐶))) → (𝐺𝑧) ∈ (𝑋 ∖ {(𝐺𝐶)}))
60 eldifsni 4770 . . . . . . . 8 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → 𝑦 ≠ (𝐺𝐶))
61 ifnefalse 4517 . . . . . . . 8 (𝑦 ≠ (𝐺𝐶) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6260, 61syl 17 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
6362adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
646, 31ffvelcdmd 7085 . . . . . . 7 (𝜑 → (𝐺𝐶) ∈ 𝑋)
6516, 9, 64dvlem 25868 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) ∈ ℂ)
6663, 65eqeltrd 2833 . . . . 5 ((𝜑𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)})) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) ∈ ℂ)
67 limcresi 25857 . . . . . . 7 (𝐺 lim 𝐶) ⊆ ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶)
686feqmptd 6957 . . . . . . . . . 10 (𝜑𝐺 = (𝑧𝑌 ↦ (𝐺𝑧)))
6968reseq1d 5976 . . . . . . . . 9 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})))
70 difss 4116 . . . . . . . . . 10 (𝑌 ∖ {𝐶}) ⊆ 𝑌
71 resmpt 6035 . . . . . . . . . 10 ((𝑌 ∖ {𝐶}) ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7270, 71ax-mp 5 . . . . . . . . 9 ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧))
7369, 72eqtrdi 2785 . . . . . . . 8 (𝜑 → (𝐺 ↾ (𝑌 ∖ {𝐶})) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)))
7473oveq1d 7428 . . . . . . 7 (𝜑 → ((𝐺 ↾ (𝑌 ∖ {𝐶})) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
7567, 74sseqtrid 4006 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) ⊆ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
76 eqid 2734 . . . . . . . . . 10 (𝐽t 𝑌) = (𝐽t 𝑌)
7776, 3dvcnp2 25892 . . . . . . . . 9 (((𝑇 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑇) ∧ 𝐶 ∈ dom (𝑇 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
785, 10, 11, 30, 77syl31anc 1374 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
793, 76cnplimc 25859 . . . . . . . . 9 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8049, 31, 79syl2anc 584 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
8178, 80mpbid 232 . . . . . . 7 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
8281simprd 495 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
8375, 82sseldd 3964 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (𝐺𝑧)) lim 𝐶))
84 eqid 2734 . . . . . . . . 9 (𝐽t 𝑆) = (𝐽t 𝑆)
85 eqid 2734 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
8684, 3, 85, 8, 16, 7eldv 25870 . . . . . . . 8 (𝜑 → ((𝐺𝐶)(𝑆 D 𝐹)𝐾 ↔ ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))))
8715, 86mpbid 232 . . . . . . 7 (𝜑 → ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))))
8887simprd 495 . . . . . 6 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))
8962mpteq2ia 5225 . . . . . . 7 (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) = (𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
9089oveq1i 7423 . . . . . 6 ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)) = ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))
9188, 90eleqtrrdi 2844 . . . . 5 (𝜑𝐾 ∈ ((𝑦 ∈ (𝑋 ∖ {(𝐺𝐶)}) ↦ if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))) lim (𝐺𝐶)))
92 eqeq1 2738 . . . . . 6 (𝑦 = (𝐺𝑧) → (𝑦 = (𝐺𝐶) ↔ (𝐺𝑧) = (𝐺𝐶)))
93 fveq2 6886 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝐹𝑦) = (𝐹‘(𝐺𝑧)))
9493oveq1d 7428 . . . . . . 7 (𝑦 = (𝐺𝑧) → ((𝐹𝑦) − (𝐹‘(𝐺𝐶))) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
95 oveq1 7420 . . . . . . 7 (𝑦 = (𝐺𝑧) → (𝑦 − (𝐺𝐶)) = ((𝐺𝑧) − (𝐺𝐶)))
9694, 95oveq12d 7431 . . . . . 6 (𝑦 = (𝐺𝑧) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))
9792, 96ifbieq2d 4532 . . . . 5 (𝑦 = (𝐺𝑧) → if(𝑦 = (𝐺𝐶), 𝐾, (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))))
98 iftrue 4511 . . . . . 6 ((𝐺𝑧) = (𝐺𝐶) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
9998ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑧 ∈ (𝑌 ∖ {𝐶}) ∧ (𝐺𝑧) = (𝐺𝐶))) → if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) = 𝐾)
10059, 66, 83, 91, 97, 99limcco 25865 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))) lim 𝐶))
10113simprd 495 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
1023mulcn 24826 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1035, 10, 11dvcl 25871 . . . . . . 7 ((𝜑𝐶(𝑇 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
1041, 103mpdan 687 . . . . . 6 (𝜑𝐿 ∈ ℂ)
10518, 104opelxpd 5704 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
10654toponunii 22871 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
107106cncnpi 23233 . . . . 5 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
108102, 105, 107sylancr 587 . . . 4 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
10948, 50, 51, 51, 3, 55, 100, 101, 108limccnp2 25864 . . 3 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
110 oveq1 7420 . . . . . . . 8 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
111110eqeq1d 2736 . . . . . . 7 (𝐾 = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
112 oveq1 7420 . . . . . . . 8 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))))
113112eqeq1d 2736 . . . . . . 7 ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) = if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) → (((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) ↔ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶))))
11419mul01d 11442 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · 0) = 0)
1159adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑋 ⊆ ℂ)
116115, 23sseldd 3964 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝑧) ∈ ℂ)
117115, 33sseldd 3964 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝐺𝐶) ∈ ℂ)
118116, 117subeq0ad 11612 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐺𝑧) − (𝐺𝐶)) = 0 ↔ (𝐺𝑧) = (𝐺𝐶)))
119118biimpar 477 . . . . . . . . . . 11 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐺𝑧) − (𝐺𝐶)) = 0)
120119oveq1d 7428 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
12149adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑌 ⊆ ℂ)
12221adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝑌)
123121, 122sseldd 3964 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧 ∈ ℂ)
124121, 32sseldd 3964 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝐶 ∈ ℂ)
125123, 124subcld 11602 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ∈ ℂ)
126 eldifsni 4770 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝑌 ∖ {𝐶}) → 𝑧𝐶)
127126adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → 𝑧𝐶)
128123, 124, 127subne0d 11611 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (𝑧𝐶) ≠ 0)
129125, 128div0d 12024 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (0 / (𝑧𝐶)) = 0)
130129adantr 480 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (0 / (𝑧𝐶)) = 0)
131120, 130eqtrd 2769 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) = 0)
132131oveq2d 7429 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝐾 · 0))
133 fveq2 6886 . . . . . . . . . . . 12 ((𝐺𝑧) = (𝐺𝐶) → (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶)))
13424, 34subeq0ad 11612 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0 ↔ (𝐹‘(𝐺𝑧)) = (𝐹‘(𝐺𝐶))))
135133, 134imbitrrid 246 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐺𝑧) = (𝐺𝐶) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0))
136135imp 406 . . . . . . . . . 10 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) = 0)
137136oveq1d 7428 . . . . . . . . 9 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = (0 / (𝑧𝐶)))
138137, 130eqtrd 2769 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)) = 0)
139114, 132, 1383eqtr4d 2779 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ (𝐺𝑧) = (𝐺𝐶)) → (𝐾 · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
140125adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ∈ ℂ)
141128adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → (𝑧𝐶) ≠ 0)
14236, 42, 140, 46, 141dmdcan2d 12055 . . . . . . 7 (((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) ∧ ¬ (𝐺𝑧) = (𝐺𝐶)) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
143111, 113, 139, 142ifbothda 4544 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
144 fvco3 6988 . . . . . . . . 9 ((𝐺:𝑌𝑋𝑧𝑌) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
1456, 21, 144syl2an 596 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
146 fvco3 6988 . . . . . . . . . 10 ((𝐺:𝑌𝑋𝐶𝑌) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
1476, 31, 146syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
148147adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
149145, 148oveq12d 7431 . . . . . . 7 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
150149oveq1d 7428 . . . . . 6 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
151143, 150eqtr4d 2772 . . . . 5 ((𝜑𝑧 ∈ (𝑌 ∖ {𝐶})) → (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
152151mpteq2dva 5222 . . . 4 (𝜑 → (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))))
153152oveq1d 7428 . . 3 (𝜑 → ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ (if((𝐺𝑧) = (𝐺𝐶), 𝐾, (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶) = ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
154109, 153eleqtrd 2835 . 2 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
155 eqid 2734 . . 3 (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
156 fco 6740 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌𝑋) → (𝐹𝐺):𝑌⟶ℂ)
15716, 6, 156syl2anc 584 . . 3 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
1582, 3, 155, 5, 157, 11eldv 25870 . 2 (𝜑 → (𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ (𝐾 · 𝐿) ∈ ((𝑧 ∈ (𝑌 ∖ {𝐶}) ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
15914, 154, 158mpbir2and 713 1 (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3928  wss 3931  ifcif 4505  {csn 4606  cop 4612   class class class wbr 5123  cmpt 5205   × cxp 5663  dom cdm 5665  cres 5667  ccom 5669  Rel wrel 5670  wf 6537  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137   · cmul 11142  cmin 11474   / cdiv 11902  t crest 17437  TopOpenctopn 17438  fldccnfld 21327  TopOnctopon 22865  intcnt 22972   Cn ccn 23179   CnP ccnp 23180   ×t ctx 23515   lim climc 25834   D cdv 25835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-icc 13376  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-hom 17298  df-cco 17299  df-rest 17439  df-topn 17440  df-0g 17458  df-gsum 17459  df-topgen 17460  df-pt 17461  df-prds 17464  df-xrs 17519  df-qtop 17524  df-imas 17525  df-xps 17527  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19769  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-cnfld 21328  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-ntr 22975  df-cn 23182  df-cnp 23183  df-tx 23517  df-hmeo 23710  df-xms 24276  df-ms 24277  df-tms 24278  df-cncf 24841  df-limc 25838  df-dv 25839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator