MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgfvn0 Structured version   Visualization version   GIF version

Theorem ntrivcvgfvn0 15539
Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgfvn0.1 𝑍 = (ℤ𝑀)
ntrivcvgfvn0.2 (𝜑𝑁𝑍)
ntrivcvgfvn0.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgfvn0.4 (𝜑𝑋 ≠ 0)
ntrivcvgfvn0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvgfvn0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ntrivcvgfvn0
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ntrivcvgfvn0.4 . 2 (𝜑𝑋 ≠ 0)
2 fclim 15190 . . . . . . . 8 ⇝ :dom ⇝ ⟶ℂ
3 ffun 6587 . . . . . . . 8 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
42, 3ax-mp 5 . . . . . . 7 Fun ⇝
5 ntrivcvgfvn0.3 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
6 funbrfv 6802 . . . . . . 7 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝑋 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋))
74, 5, 6mpsyl 68 . . . . . 6 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
87adantr 480 . . . . 5 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
9 eqid 2738 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
10 ntrivcvgfvn0.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
11 uzssz 12532 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
1210, 11eqsstri 3951 . . . . . . . . 9 𝑍 ⊆ ℤ
13 ntrivcvgfvn0.2 . . . . . . . . 9 (𝜑𝑁𝑍)
1412, 13sselid 3915 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1514adantr 480 . . . . . . 7 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 𝑁 ∈ ℤ)
16 seqex 13651 . . . . . . . 8 seq𝑀( · , 𝐹) ∈ V
1716a1i 11 . . . . . . 7 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → seq𝑀( · , 𝐹) ∈ V)
18 0cnd 10899 . . . . . . 7 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 0 ∈ ℂ)
19 fveqeq2 6765 . . . . . . . . . 10 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) = 0))
2019imbi2d 340 . . . . . . . . 9 (𝑚 = 𝑁 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑁) = 0)))
21 fveqeq2 6765 . . . . . . . . . 10 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) = 0))
2221imbi2d 340 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑛) = 0)))
23 fveqeq2 6765 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0))
2423imbi2d 340 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
25 fveqeq2 6765 . . . . . . . . . 10 (𝑚 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑘) = 0))
2625imbi2d 340 . . . . . . . . 9 (𝑚 = 𝑘 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑘) = 0)))
27 simpr 484 . . . . . . . . 9 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑁) = 0)
2813, 10eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ𝑀))
29 uztrn 12529 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
3028, 29sylan2 592 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑) → 𝑛 ∈ (ℤ𝑀))
31303adant3 1130 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → 𝑛 ∈ (ℤ𝑀))
32 seqp1 13664 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
3331, 32syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
34 oveq1 7262 . . . . . . . . . . . . . 14 ((seq𝑀( · , 𝐹)‘𝑛) = 0 → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (0 · (𝐹‘(𝑛 + 1))))
35343ad2ant3 1133 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (0 · (𝐹‘(𝑛 + 1))))
36 peano2uz 12570 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ𝑁) → (𝑛 + 1) ∈ (ℤ𝑁))
3710uztrn2 12530 . . . . . . . . . . . . . . . . . 18 ((𝑁𝑍 ∧ (𝑛 + 1) ∈ (ℤ𝑁)) → (𝑛 + 1) ∈ 𝑍)
3813, 36, 37syl2an 595 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑛 + 1) ∈ 𝑍)
39 ntrivcvgfvn0.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4039ralrimiva 3107 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
41 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
4241eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
4342rspcv 3547 . . . . . . . . . . . . . . . . . 18 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝐹‘(𝑛 + 1)) ∈ ℂ))
4440, 43mpan9 506 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
4538, 44syldan 590 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
4645ancoms 458 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
4746mul02d 11103 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑) → (0 · (𝐹‘(𝑛 + 1))) = 0)
48473adant3 1130 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (0 · (𝐹‘(𝑛 + 1))) = 0)
4933, 35, 483eqtrd 2782 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)
50493exp 1117 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) = 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
5150adantrd 491 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ((seq𝑀( · , 𝐹)‘𝑛) = 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
5251a2d 29 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑁) → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑛) = 0) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
5320, 22, 24, 26, 27, 52uzind4i 12579 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑘) = 0))
5453impcom 407 . . . . . . 7 (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) ∧ 𝑘 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑘) = 0)
559, 15, 17, 18, 54climconst 15180 . . . . . 6 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → seq𝑀( · , 𝐹) ⇝ 0)
56 funbrfv 6802 . . . . . 6 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 0 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 0))
574, 55, 56mpsyl 68 . . . . 5 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ( ⇝ ‘seq𝑀( · , 𝐹)) = 0)
588, 57eqtr3d 2780 . . . 4 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 𝑋 = 0)
5958ex 412 . . 3 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) = 0 → 𝑋 = 0))
6059necon3d 2963 . 2 (𝜑 → (𝑋 ≠ 0 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
611, 60mpd 15 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422   class class class wbr 5070  dom cdm 5580  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cz 12249  cuz 12511  seqcseq 13649  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125
This theorem is referenced by:  ntrivcvgtail  15540
  Copyright terms: Public domain W3C validator