MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ntrivcvgfvn0 Structured version   Visualization version   GIF version

Theorem ntrivcvgfvn0 15463
Description: Any value of a product sequence that converges to a nonzero value is itself nonzero. (Contributed by Scott Fenton, 20-Dec-2017.)
Hypotheses
Ref Expression
ntrivcvgfvn0.1 𝑍 = (ℤ𝑀)
ntrivcvgfvn0.2 (𝜑𝑁𝑍)
ntrivcvgfvn0.3 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
ntrivcvgfvn0.4 (𝜑𝑋 ≠ 0)
ntrivcvgfvn0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
ntrivcvgfvn0 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Distinct variable groups:   𝑘,𝐹   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hint:   𝑋(𝑘)

Proof of Theorem ntrivcvgfvn0
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ntrivcvgfvn0.4 . 2 (𝜑𝑋 ≠ 0)
2 fclim 15114 . . . . . . . 8 ⇝ :dom ⇝ ⟶ℂ
3 ffun 6548 . . . . . . . 8 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
42, 3ax-mp 5 . . . . . . 7 Fun ⇝
5 ntrivcvgfvn0.3 . . . . . . 7 (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋)
6 funbrfv 6763 . . . . . . 7 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝑋 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋))
74, 5, 6mpsyl 68 . . . . . 6 (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
87adantr 484 . . . . 5 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)
9 eqid 2737 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
10 ntrivcvgfvn0.1 . . . . . . . . . 10 𝑍 = (ℤ𝑀)
11 uzssz 12459 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
1210, 11eqsstri 3935 . . . . . . . . 9 𝑍 ⊆ ℤ
13 ntrivcvgfvn0.2 . . . . . . . . 9 (𝜑𝑁𝑍)
1412, 13sselid 3898 . . . . . . . 8 (𝜑𝑁 ∈ ℤ)
1514adantr 484 . . . . . . 7 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 𝑁 ∈ ℤ)
16 seqex 13576 . . . . . . . 8 seq𝑀( · , 𝐹) ∈ V
1716a1i 11 . . . . . . 7 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → seq𝑀( · , 𝐹) ∈ V)
18 0cnd 10826 . . . . . . 7 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 0 ∈ ℂ)
19 fveqeq2 6726 . . . . . . . . . 10 (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) = 0))
2019imbi2d 344 . . . . . . . . 9 (𝑚 = 𝑁 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑁) = 0)))
21 fveqeq2 6726 . . . . . . . . . 10 (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) = 0))
2221imbi2d 344 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑛) = 0)))
23 fveqeq2 6726 . . . . . . . . . 10 (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0))
2423imbi2d 344 . . . . . . . . 9 (𝑚 = (𝑛 + 1) → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
25 fveqeq2 6726 . . . . . . . . . 10 (𝑚 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑘) = 0))
2625imbi2d 344 . . . . . . . . 9 (𝑚 = 𝑘 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑘) = 0)))
27 simpr 488 . . . . . . . . 9 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑁) = 0)
2813, 10eleqtrdi 2848 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ𝑀))
29 uztrn 12456 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
3028, 29sylan2 596 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑) → 𝑛 ∈ (ℤ𝑀))
31303adant3 1134 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → 𝑛 ∈ (ℤ𝑀))
32 seqp1 13589 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
3331, 32syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))))
34 oveq1 7220 . . . . . . . . . . . . . 14 ((seq𝑀( · , 𝐹)‘𝑛) = 0 → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (0 · (𝐹‘(𝑛 + 1))))
35343ad2ant3 1137 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (0 · (𝐹‘(𝑛 + 1))))
36 peano2uz 12497 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ𝑁) → (𝑛 + 1) ∈ (ℤ𝑁))
3710uztrn2 12457 . . . . . . . . . . . . . . . . . 18 ((𝑁𝑍 ∧ (𝑛 + 1) ∈ (ℤ𝑁)) → (𝑛 + 1) ∈ 𝑍)
3813, 36, 37syl2an 599 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝑛 + 1) ∈ 𝑍)
39 ntrivcvgfvn0.5 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4039ralrimiva 3105 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
41 fveq2 6717 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
4241eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ))
4342rspcv 3532 . . . . . . . . . . . . . . . . . 18 ((𝑛 + 1) ∈ 𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝐹‘(𝑛 + 1)) ∈ ℂ))
4440, 43mpan9 510 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
4538, 44syldan 594 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
4645ancoms 462 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ)
4746mul02d 11030 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑) → (0 · (𝐹‘(𝑛 + 1))) = 0)
48473adant3 1134 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (0 · (𝐹‘(𝑛 + 1))) = 0)
4933, 35, 483eqtrd 2781 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)
50493exp 1121 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) = 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
5150adantrd 495 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑁) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ((seq𝑀( · , 𝐹)‘𝑛) = 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
5251a2d 29 . . . . . . . . 9 (𝑛 ∈ (ℤ𝑁) → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑛) = 0) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)))
5320, 22, 24, 26, 27, 52uzind4i 12506 . . . . . . . 8 (𝑘 ∈ (ℤ𝑁) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑘) = 0))
5453impcom 411 . . . . . . 7 (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) ∧ 𝑘 ∈ (ℤ𝑁)) → (seq𝑀( · , 𝐹)‘𝑘) = 0)
559, 15, 17, 18, 54climconst 15104 . . . . . 6 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → seq𝑀( · , 𝐹) ⇝ 0)
56 funbrfv 6763 . . . . . 6 (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 0 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 0))
574, 55, 56mpsyl 68 . . . . 5 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ( ⇝ ‘seq𝑀( · , 𝐹)) = 0)
588, 57eqtr3d 2779 . . . 4 ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 𝑋 = 0)
5958ex 416 . . 3 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) = 0 → 𝑋 = 0))
6059necon3d 2961 . 2 (𝜑 → (𝑋 ≠ 0 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0))
611, 60mpd 15 1 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  Vcvv 3408   class class class wbr 5053  dom cdm 5551  Fun wfun 6374  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  cz 12176  cuz 12438  seqcseq 13574  cli 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049
This theorem is referenced by:  ntrivcvgtail  15464
  Copyright terms: Public domain W3C validator