| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ntrivcvgfvn0.4 | . 2
⊢ (𝜑 → 𝑋 ≠ 0) | 
| 2 |  | fclim 15589 | . . . . . . . 8
⊢  ⇝
:dom ⇝ ⟶ℂ | 
| 3 |  | ffun 6739 | . . . . . . . 8
⊢ ( ⇝
:dom ⇝ ⟶ℂ → Fun ⇝ ) | 
| 4 | 2, 3 | ax-mp 5 | . . . . . . 7
⊢ Fun
⇝ | 
| 5 |  | ntrivcvgfvn0.3 | . . . . . . 7
⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) | 
| 6 |  | funbrfv 6957 | . . . . . . 7
⊢ (Fun
⇝ → (seq𝑀(
· , 𝐹) ⇝ 𝑋 → ( ⇝
‘seq𝑀( · ,
𝐹)) = 𝑋)) | 
| 7 | 4, 5, 6 | mpsyl 68 | . . . . . 6
⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋) | 
| 8 | 7 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋) | 
| 9 |  | eqid 2737 | . . . . . . 7
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) | 
| 10 |  | ntrivcvgfvn0.1 | . . . . . . . . . 10
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 11 |  | uzssz 12899 | . . . . . . . . . 10
⊢
(ℤ≥‘𝑀) ⊆ ℤ | 
| 12 | 10, 11 | eqsstri 4030 | . . . . . . . . 9
⊢ 𝑍 ⊆
ℤ | 
| 13 |  | ntrivcvgfvn0.2 | . . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ 𝑍) | 
| 14 | 12, 13 | sselid 3981 | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 15 | 14 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 𝑁 ∈ ℤ) | 
| 16 |  | seqex 14044 | . . . . . . . 8
⊢ seq𝑀( · , 𝐹) ∈ V | 
| 17 | 16 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → seq𝑀( · , 𝐹) ∈ V) | 
| 18 |  | 0cnd 11254 | . . . . . . 7
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 0 ∈
ℂ) | 
| 19 |  | fveqeq2 6915 | . . . . . . . . . 10
⊢ (𝑚 = 𝑁 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑁) = 0)) | 
| 20 | 19 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑚 = 𝑁 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑁) = 0))) | 
| 21 |  | fveqeq2 6915 | . . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑛) = 0)) | 
| 22 | 21 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑚 = 𝑛 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑛) = 0))) | 
| 23 |  | fveqeq2 6915 | . . . . . . . . . 10
⊢ (𝑚 = (𝑛 + 1) → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0)) | 
| 24 | 23 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑚 = (𝑛 + 1) → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0))) | 
| 25 |  | fveqeq2 6915 | . . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((seq𝑀( · , 𝐹)‘𝑚) = 0 ↔ (seq𝑀( · , 𝐹)‘𝑘) = 0)) | 
| 26 | 25 | imbi2d 340 | . . . . . . . . 9
⊢ (𝑚 = 𝑘 → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑚) = 0) ↔ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑘) = 0))) | 
| 27 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑁) = 0) | 
| 28 | 13, 10 | eleqtrdi 2851 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 29 |  | uztrn 12896 | . . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 30 | 28, 29 | sylan2 593 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 31 | 30 | 3adant3 1133 | . . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → 𝑛 ∈ (ℤ≥‘𝑀)) | 
| 32 |  | seqp1 14057 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) | 
| 33 | 31, 32 | syl 17 | . . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1)))) | 
| 34 |  | oveq1 7438 | . . . . . . . . . . . . . 14
⊢
((seq𝑀( · ,
𝐹)‘𝑛) = 0 → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (0 · (𝐹‘(𝑛 + 1)))) | 
| 35 | 34 | 3ad2ant3 1136 | . . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → ((seq𝑀( · , 𝐹)‘𝑛) · (𝐹‘(𝑛 + 1))) = (0 · (𝐹‘(𝑛 + 1)))) | 
| 36 |  | peano2uz 12943 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → (𝑛 + 1) ∈
(ℤ≥‘𝑁)) | 
| 37 | 10 | uztrn2 12897 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ 𝑍 ∧ (𝑛 + 1) ∈
(ℤ≥‘𝑁)) → (𝑛 + 1) ∈ 𝑍) | 
| 38 | 13, 36, 37 | syl2an 596 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝑛 + 1) ∈ 𝑍) | 
| 39 |  | ntrivcvgfvn0.5 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | 
| 40 | 39 | ralrimiva 3146 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) | 
| 41 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) | 
| 42 | 41 | eleq1d 2826 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘(𝑛 + 1)) ∈ ℂ)) | 
| 43 | 42 | rspcv 3618 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 + 1) ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ → (𝐹‘(𝑛 + 1)) ∈ ℂ)) | 
| 44 | 40, 43 | mpan9 506 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 + 1) ∈ 𝑍) → (𝐹‘(𝑛 + 1)) ∈ ℂ) | 
| 45 | 38, 44 | syldan 591 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝐹‘(𝑛 + 1)) ∈ ℂ) | 
| 46 | 45 | ancoms 458 | . . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑) → (𝐹‘(𝑛 + 1)) ∈ ℂ) | 
| 47 | 46 | mul02d 11459 | . . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑) → (0 · (𝐹‘(𝑛 + 1))) = 0) | 
| 48 | 47 | 3adant3 1133 | . . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (0 · (𝐹‘(𝑛 + 1))) = 0) | 
| 49 | 33, 35, 48 | 3eqtrd 2781 | . . . . . . . . . . . 12
⊢ ((𝑛 ∈
(ℤ≥‘𝑁) ∧ 𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑛) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0) | 
| 50 | 49 | 3exp 1120 | . . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → (𝜑 → ((seq𝑀( · , 𝐹)‘𝑛) = 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0))) | 
| 51 | 50 | adantrd 491 | . . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ((seq𝑀( · , 𝐹)‘𝑛) = 0 → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0))) | 
| 52 | 51 | a2d 29 | . . . . . . . . 9
⊢ (𝑛 ∈
(ℤ≥‘𝑁) → (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑛) = 0) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘(𝑛 + 1)) = 0))) | 
| 53 | 20, 22, 24, 26, 27, 52 | uzind4i 12952 | . . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝑁) → ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → (seq𝑀( · , 𝐹)‘𝑘) = 0)) | 
| 54 | 53 | impcom 407 | . . . . . . 7
⊢ (((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (seq𝑀( · , 𝐹)‘𝑘) = 0) | 
| 55 | 9, 15, 17, 18, 54 | climconst 15579 | . . . . . 6
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → seq𝑀( · , 𝐹) ⇝ 0) | 
| 56 |  | funbrfv 6957 | . . . . . 6
⊢ (Fun
⇝ → (seq𝑀(
· , 𝐹) ⇝ 0
→ ( ⇝ ‘seq𝑀( · , 𝐹)) = 0)) | 
| 57 | 4, 55, 56 | mpsyl 68 | . . . . 5
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → ( ⇝ ‘seq𝑀( · , 𝐹)) = 0) | 
| 58 | 8, 57 | eqtr3d 2779 | . . . 4
⊢ ((𝜑 ∧ (seq𝑀( · , 𝐹)‘𝑁) = 0) → 𝑋 = 0) | 
| 59 | 58 | ex 412 | . . 3
⊢ (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) = 0 → 𝑋 = 0)) | 
| 60 | 59 | necon3d 2961 | . 2
⊢ (𝜑 → (𝑋 ≠ 0 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0)) | 
| 61 | 1, 60 | mpd 15 | 1
⊢ (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ≠ 0) |