Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zprodn0 | Structured version Visualization version GIF version |
Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.) |
Ref | Expression |
---|---|
zprodn0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
zprodn0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
zprodn0.3 | ⊢ (𝜑 → 𝑋 ≠ 0) |
zprodn0.4 | ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) |
zprodn0.5 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
zprodn0.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) |
zprodn0.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
zprodn0 | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zprodn0.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | zprodn0.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | zprodn0.4 | . . . 4 ⊢ (𝜑 → seq𝑀( · , 𝐹) ⇝ 𝑋) | |
4 | zprodn0.3 | . . . 4 ⊢ (𝜑 → 𝑋 ≠ 0) | |
5 | 1, 2, 3, 4 | ntrivcvgn0 15717 | . . 3 ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 ∃𝑥(𝑥 ≠ 0 ∧ seq𝑚( · , 𝐹) ⇝ 𝑥)) |
6 | zprodn0.5 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
7 | zprodn0.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) | |
8 | zprodn0.7 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
9 | 1, 2, 5, 6, 7, 8 | zprod 15754 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |
10 | fclim 15369 | . . . 4 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
11 | ffun 6666 | . . . 4 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
12 | 10, 11 | ax-mp 5 | . . 3 ⊢ Fun ⇝ |
13 | funbrfv 6888 | . . 3 ⊢ (Fun ⇝ → (seq𝑀( · , 𝐹) ⇝ 𝑋 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋)) | |
14 | 12, 3, 13 | mpsyl 68 | . 2 ⊢ (𝜑 → ( ⇝ ‘seq𝑀( · , 𝐹)) = 𝑋) |
15 | 9, 14 | eqtrd 2777 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ⊆ wss 3908 ifcif 4484 class class class wbr 5103 dom cdm 5630 Fun wfun 6485 ⟶wf 6487 ‘cfv 6491 ℂcc 10982 0cc0 10984 1c1 10985 · cmul 10989 ℤcz 12432 ℤ≥cuz 12695 seqcseq 13834 ⇝ cli 15300 ∏cprod 15722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-inf2 9510 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 ax-pre-sup 11062 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-se 5586 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-isom 6500 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-1st 7911 df-2nd 7912 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-er 8581 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-sup 9311 df-oi 9379 df-card 9808 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-div 11746 df-nn 12087 df-2 12149 df-3 12150 df-n0 12347 df-z 12433 df-uz 12696 df-rp 12844 df-fz 13353 df-fzo 13496 df-seq 13835 df-exp 13896 df-hash 14158 df-cj 14917 df-re 14918 df-im 14919 df-sqrt 15053 df-abs 15054 df-clim 15304 df-prod 15723 |
This theorem is referenced by: iprodn0 15757 prod0 15760 prod1 15761 |
Copyright terms: Public domain | W3C validator |