![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zprodn0 | Structured version Visualization version GIF version |
Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.) |
Ref | Expression |
---|---|
zprodn0.1 | β’ π = (β€β₯βπ) |
zprodn0.2 | β’ (π β π β β€) |
zprodn0.3 | β’ (π β π β 0) |
zprodn0.4 | β’ (π β seqπ( Β· , πΉ) β π) |
zprodn0.5 | β’ (π β π΄ β π) |
zprodn0.6 | β’ ((π β§ π β π) β (πΉβπ) = if(π β π΄, π΅, 1)) |
zprodn0.7 | β’ ((π β§ π β π΄) β π΅ β β) |
Ref | Expression |
---|---|
zprodn0 | β’ (π β βπ β π΄ π΅ = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zprodn0.1 | . . 3 β’ π = (β€β₯βπ) | |
2 | zprodn0.2 | . . 3 β’ (π β π β β€) | |
3 | zprodn0.4 | . . . 4 β’ (π β seqπ( Β· , πΉ) β π) | |
4 | zprodn0.3 | . . . 4 β’ (π β π β 0) | |
5 | 1, 2, 3, 4 | ntrivcvgn0 15848 | . . 3 β’ (π β βπ β π βπ₯(π₯ β 0 β§ seqπ( Β· , πΉ) β π₯)) |
6 | zprodn0.5 | . . 3 β’ (π β π΄ β π) | |
7 | zprodn0.6 | . . 3 β’ ((π β§ π β π) β (πΉβπ) = if(π β π΄, π΅, 1)) | |
8 | zprodn0.7 | . . 3 β’ ((π β§ π β π΄) β π΅ β β) | |
9 | 1, 2, 5, 6, 7, 8 | zprod 15885 | . 2 β’ (π β βπ β π΄ π΅ = ( β βseqπ( Β· , πΉ))) |
10 | fclim 15501 | . . . 4 β’ β :dom β βΆβ | |
11 | ffun 6719 | . . . 4 β’ ( β :dom β βΆβ β Fun β ) | |
12 | 10, 11 | ax-mp 5 | . . 3 β’ Fun β |
13 | funbrfv 6941 | . . 3 β’ (Fun β β (seqπ( Β· , πΉ) β π β ( β βseqπ( Β· , πΉ)) = π)) | |
14 | 12, 3, 13 | mpsyl 68 | . 2 β’ (π β ( β βseqπ( Β· , πΉ)) = π) |
15 | 9, 14 | eqtrd 2770 | 1 β’ (π β βπ β π΄ π΅ = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β wne 2938 β wss 3947 ifcif 4527 class class class wbr 5147 dom cdm 5675 Fun wfun 6536 βΆwf 6538 βcfv 6542 βcc 11110 0cc0 11112 1c1 11113 Β· cmul 11117 β€cz 12562 β€β₯cuz 12826 seqcseq 13970 β cli 15432 βcprod 15853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-fzo 13632 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-prod 15854 |
This theorem is referenced by: iprodn0 15888 prod0 15891 prod1 15892 |
Copyright terms: Public domain | W3C validator |