MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmul0or Structured version   Visualization version   GIF version

Theorem nvmul0or 30678
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmul0or.1 𝑋 = (BaseSet‘𝑈)
nvmul0or.4 𝑆 = ( ·𝑠OLD𝑈)
nvmul0or.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvmul0or ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍)))

Proof of Theorem nvmul0or
StepHypRef Expression
1 df-ne 2938 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 7438 . . . . . . . 8 ((𝐴𝑆𝐵) = 𝑍 → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍))
32ad2antlr 727 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍))
4 recid2 11934 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 7445 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵))
653ad2antl2 1185 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵))
7 simpl1 1190 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝑈 ∈ NrmCVec)
8 reccl 11926 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
983ad2antl2 1185 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
10 simpl2 1191 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
11 simpl3 1192 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝐵𝑋)
12 nvmul0or.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
13 nvmul0or.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1412, 13nvsass 30656 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵)))
157, 9, 10, 11, 14syl13anc 1371 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵)))
1612, 13nvsid 30655 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
17163adant2 1130 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
1817adantr 480 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (1𝑆𝐵) = 𝐵)
196, 15, 183eqtr3d 2782 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵)
2019adantlr 715 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵)
21 nvmul0or.6 . . . . . . . . . . . 12 𝑍 = (0vec𝑈)
2213, 21nvsz 30666 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (1 / 𝐴) ∈ ℂ) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
238, 22sylan2 593 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
2423anassrs 467 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
25243adantl3 1167 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
2625adantlr 715 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
273, 20, 263eqtr3d 2782 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → 𝐵 = 𝑍)
2827ex 412 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 ≠ 0 → 𝐵 = 𝑍))
291, 28biimtrrid 243 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (¬ 𝐴 = 0 → 𝐵 = 𝑍))
3029orrd 863 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 = 0 ∨ 𝐵 = 𝑍))
3130ex 412 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 → (𝐴 = 0 ∨ 𝐵 = 𝑍)))
3212, 13, 21nv0 30665 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (0𝑆𝐵) = 𝑍)
33 oveq1 7437 . . . . . 6 (𝐴 = 0 → (𝐴𝑆𝐵) = (0𝑆𝐵))
3433eqeq1d 2736 . . . . 5 (𝐴 = 0 → ((𝐴𝑆𝐵) = 𝑍 ↔ (0𝑆𝐵) = 𝑍))
3532, 34syl5ibrcom 247 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍))
36353adant2 1130 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍))
3713, 21nvsz 30666 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
38 oveq2 7438 . . . . . 6 (𝐵 = 𝑍 → (𝐴𝑆𝐵) = (𝐴𝑆𝑍))
3938eqeq1d 2736 . . . . 5 (𝐵 = 𝑍 → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴𝑆𝑍) = 𝑍))
4037, 39syl5ibrcom 247 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍))
41403adant3 1131 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍))
4236, 41jaod 859 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴 = 0 ∨ 𝐵 = 𝑍) → (𝐴𝑆𝐵) = 𝑍))
4331, 42impbid 212 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   · cmul 11157   / cdiv 11917  NrmCVeccnv 30612  BaseSetcba 30614   ·𝑠OLD cns 30615  0veccn0v 30616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-grpo 30521  df-gid 30522  df-ginv 30523  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-nmcv 30628
This theorem is referenced by:  nmlno0lem  30821
  Copyright terms: Public domain W3C validator