Proof of Theorem nvmul0or
Step | Hyp | Ref
| Expression |
1 | | df-ne 2943 |
. . . . 5
⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) |
2 | | oveq2 7263 |
. . . . . . . 8
⊢ ((𝐴𝑆𝐵) = 𝑍 → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍)) |
3 | 2 | ad2antlr 723 |
. . . . . . 7
⊢ ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍)) |
4 | | recid2 11578 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1) |
5 | 4 | oveq1d 7270 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵)) |
6 | 5 | 3ad2antl2 1184 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵)) |
7 | | simpl1 1189 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → 𝑈 ∈ NrmCVec) |
8 | | reccl 11570 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈
ℂ) |
9 | 8 | 3ad2antl2 1184 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) |
10 | | simpl2 1190 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ) |
11 | | simpl3 1191 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → 𝐵 ∈ 𝑋) |
12 | | nvmul0or.1 |
. . . . . . . . . . 11
⊢ 𝑋 = (BaseSet‘𝑈) |
13 | | nvmul0or.4 |
. . . . . . . . . . 11
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
14 | 12, 13 | nvsass 28891 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ ((1 /
𝐴) ∈ ℂ ∧
𝐴 ∈ ℂ ∧
𝐵 ∈ 𝑋)) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵))) |
15 | 7, 9, 10, 11, 14 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵))) |
16 | 12, 13 | nvsid 28890 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (1𝑆𝐵) = 𝐵) |
17 | 16 | 3adant2 1129 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (1𝑆𝐵) = 𝐵) |
18 | 17 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → (1𝑆𝐵) = 𝐵) |
19 | 6, 15, 18 | 3eqtr3d 2786 |
. . . . . . . 8
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵) |
20 | 19 | adantlr 711 |
. . . . . . 7
⊢ ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵) |
21 | | nvmul0or.6 |
. . . . . . . . . . . 12
⊢ 𝑍 = (0vec‘𝑈) |
22 | 13, 21 | nvsz 28901 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ (1 / 𝐴) ∈ ℂ) → ((1 /
𝐴)𝑆𝑍) = 𝑍) |
23 | 8, 22 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴)𝑆𝑍) = 𝑍) |
24 | 23 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍) |
25 | 24 | 3adantl3 1166 |
. . . . . . . 8
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍) |
26 | 25 | adantlr 711 |
. . . . . . 7
⊢ ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍) |
27 | 3, 20, 26 | 3eqtr3d 2786 |
. . . . . 6
⊢ ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → 𝐵 = 𝑍) |
28 | 27 | ex 412 |
. . . . 5
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 ≠ 0 → 𝐵 = 𝑍)) |
29 | 1, 28 | syl5bir 242 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (¬ 𝐴 = 0 → 𝐵 = 𝑍)) |
30 | 29 | orrd 859 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 = 0 ∨ 𝐵 = 𝑍)) |
31 | 30 | ex 412 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑆𝐵) = 𝑍 → (𝐴 = 0 ∨ 𝐵 = 𝑍))) |
32 | 12, 13, 21 | nv0 28900 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (0𝑆𝐵) = 𝑍) |
33 | | oveq1 7262 |
. . . . . 6
⊢ (𝐴 = 0 → (𝐴𝑆𝐵) = (0𝑆𝐵)) |
34 | 33 | eqeq1d 2740 |
. . . . 5
⊢ (𝐴 = 0 → ((𝐴𝑆𝐵) = 𝑍 ↔ (0𝑆𝐵) = 𝑍)) |
35 | 32, 34 | syl5ibrcom 246 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍)) |
36 | 35 | 3adant2 1129 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍)) |
37 | 13, 21 | nvsz 28901 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
38 | | oveq2 7263 |
. . . . . 6
⊢ (𝐵 = 𝑍 → (𝐴𝑆𝐵) = (𝐴𝑆𝑍)) |
39 | 38 | eqeq1d 2740 |
. . . . 5
⊢ (𝐵 = 𝑍 → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴𝑆𝑍) = 𝑍)) |
40 | 37, 39 | syl5ibrcom 246 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍)) |
41 | 40 | 3adant3 1130 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍)) |
42 | 36, 41 | jaod 855 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → ((𝐴 = 0 ∨ 𝐵 = 𝑍) → (𝐴𝑆𝐵) = 𝑍)) |
43 | 31, 42 | impbid 211 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍))) |