MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmul0or Structured version   Visualization version   GIF version

Theorem nvmul0or 30579
Description: If a scalar product is zero, one of its factors must be zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmul0or.1 𝑋 = (BaseSet‘𝑈)
nvmul0or.4 𝑆 = ( ·𝑠OLD𝑈)
nvmul0or.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvmul0or ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍)))

Proof of Theorem nvmul0or
StepHypRef Expression
1 df-ne 2926 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
2 oveq2 7395 . . . . . . . 8 ((𝐴𝑆𝐵) = 𝑍 → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍))
32ad2antlr 727 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = ((1 / 𝐴)𝑆𝑍))
4 recid2 11852 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 𝐴) · 𝐴) = 1)
54oveq1d 7402 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵))
653ad2antl2 1187 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = (1𝑆𝐵))
7 simpl1 1192 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝑈 ∈ NrmCVec)
8 reccl 11844 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
983ad2antl2 1187 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
10 simpl2 1193 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℂ)
11 simpl3 1194 . . . . . . . . . 10 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → 𝐵𝑋)
12 nvmul0or.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
13 nvmul0or.4 . . . . . . . . . . 11 𝑆 = ( ·𝑠OLD𝑈)
1412, 13nvsass 30557 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ ((1 / 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋)) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵)))
157, 9, 10, 11, 14syl13anc 1374 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (((1 / 𝐴) · 𝐴)𝑆𝐵) = ((1 / 𝐴)𝑆(𝐴𝑆𝐵)))
1612, 13nvsid 30556 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
17163adant2 1131 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (1𝑆𝐵) = 𝐵)
1817adantr 480 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → (1𝑆𝐵) = 𝐵)
196, 15, 183eqtr3d 2772 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵)
2019adantlr 715 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆(𝐴𝑆𝐵)) = 𝐵)
21 nvmul0or.6 . . . . . . . . . . . 12 𝑍 = (0vec𝑈)
2213, 21nvsz 30567 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (1 / 𝐴) ∈ ℂ) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
238, 22sylan2 593 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
2423anassrs 467 . . . . . . . . 9 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
25243adantl3 1169 . . . . . . . 8 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
2625adantlr 715 . . . . . . 7 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → ((1 / 𝐴)𝑆𝑍) = 𝑍)
273, 20, 263eqtr3d 2772 . . . . . 6 ((((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) ∧ 𝐴 ≠ 0) → 𝐵 = 𝑍)
2827ex 412 . . . . 5 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 ≠ 0 → 𝐵 = 𝑍))
291, 28biimtrrid 243 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (¬ 𝐴 = 0 → 𝐵 = 𝑍))
3029orrd 863 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) ∧ (𝐴𝑆𝐵) = 𝑍) → (𝐴 = 0 ∨ 𝐵 = 𝑍))
3130ex 412 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 → (𝐴 = 0 ∨ 𝐵 = 𝑍)))
3212, 13, 21nv0 30566 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (0𝑆𝐵) = 𝑍)
33 oveq1 7394 . . . . . 6 (𝐴 = 0 → (𝐴𝑆𝐵) = (0𝑆𝐵))
3433eqeq1d 2731 . . . . 5 (𝐴 = 0 → ((𝐴𝑆𝐵) = 𝑍 ↔ (0𝑆𝐵) = 𝑍))
3532, 34syl5ibrcom 247 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍))
36353adant2 1131 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐴 = 0 → (𝐴𝑆𝐵) = 𝑍))
3713, 21nvsz 30567 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
38 oveq2 7395 . . . . . 6 (𝐵 = 𝑍 → (𝐴𝑆𝐵) = (𝐴𝑆𝑍))
3938eqeq1d 2731 . . . . 5 (𝐵 = 𝑍 → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴𝑆𝑍) = 𝑍))
4037, 39syl5ibrcom 247 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍))
41403adant3 1132 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → (𝐵 = 𝑍 → (𝐴𝑆𝐵) = 𝑍))
4236, 41jaod 859 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴 = 0 ∨ 𝐵 = 𝑍) → (𝐴𝑆𝐵) = 𝑍))
4331, 42impbid 212 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵𝑋) → ((𝐴𝑆𝐵) = 𝑍 ↔ (𝐴 = 0 ∨ 𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   · cmul 11073   / cdiv 11835  NrmCVeccnv 30513  BaseSetcba 30515   ·𝑠OLD cns 30516  0veccn0v 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-grpo 30422  df-gid 30423  df-ginv 30424  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-nmcv 30529
This theorem is referenced by:  nmlno0lem  30722
  Copyright terms: Public domain W3C validator