![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1oaomeqom | Structured version Visualization version GIF version |
Description: Ordinal one plus omega is equal to omega. See oaabs 8667 for the sum of any natural number on the left and ordinal at least as large as omega on the right. Lemma 3.8 of [Schloeder] p. 8. See oaabs2 8668 where a power of omega is the upper bound of the left and a lower bound on the right. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
1oaomeqom | ⊢ (1o +o ω) = ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9679 | . 2 ⊢ ω ∈ On | |
2 | 1onn 8659 | . 2 ⊢ 1o ∈ ω | |
3 | oaabslem 8666 | . 2 ⊢ ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ (1o +o ω) = ω |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Oncon0 6365 (class class class)co 7413 ωcom 7865 1oc1o 8478 +o coa 8482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7735 ax-inf2 9674 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 |
This theorem is referenced by: oaabsb 42994 oaordnrex 42995 |
Copyright terms: Public domain | W3C validator |