| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orbitclmpt | Structured version Visualization version GIF version | ||
| Description: Version of orbitcl 44909 using maps-to notation. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| orbitclmpt.1 | ⊢ Ⅎ𝑥𝐵 |
| orbitclmpt.2 | ⊢ Ⅎ𝑥𝐷 |
| orbitclmpt.3 | ⊢ 𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω) |
| orbitclmpt.4 | ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| orbitclmpt | ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3478 | . . 3 ⊢ (𝐵 ∈ 𝑍 → 𝐵 ∈ V) | |
| 2 | orbitclmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | orbitclmpt.2 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
| 4 | orbitclmpt.4 | . . . 4 ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐷) | |
| 5 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 6 | 2, 3, 4, 5 | fvmptf 7003 | . . 3 ⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘𝐵) = 𝐷) |
| 7 | 1, 6 | sylan 580 | . 2 ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘𝐵) = 𝐷) |
| 8 | orbitcl 44909 | . . . 4 ⊢ (𝐵 ∈ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω) → ((𝑥 ∈ V ↦ 𝐶)‘𝐵) ∈ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω)) | |
| 9 | orbitclmpt.3 | . . . . 5 ⊢ 𝑍 = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω) | |
| 10 | 9 | eleq2i 2825 | . . . 4 ⊢ (𝐵 ∈ 𝑍 ↔ 𝐵 ∈ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω)) |
| 11 | 9 | eleq2i 2825 | . . . 4 ⊢ (((𝑥 ∈ V ↦ 𝐶)‘𝐵) ∈ 𝑍 ↔ ((𝑥 ∈ V ↦ 𝐶)‘𝐵) ∈ (rec((𝑥 ∈ V ↦ 𝐶), 𝐴) “ ω)) |
| 12 | 8, 10, 11 | 3imtr4i 292 | . . 3 ⊢ (𝐵 ∈ 𝑍 → ((𝑥 ∈ V ↦ 𝐶)‘𝐵) ∈ 𝑍) |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘𝐵) ∈ 𝑍) |
| 14 | 7, 13 | eqeltrrd 2834 | 1 ⊢ ((𝐵 ∈ 𝑍 ∧ 𝐷 ∈ 𝑉) → 𝐷 ∈ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2882 Vcvv 3457 ↦ cmpt 5198 “ cima 5654 ‘cfv 6527 ωcom 7855 reccrdg 8417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 |
| This theorem is referenced by: permaxinf2lem 44964 |
| Copyright terms: Public domain | W3C validator |