| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trwf | Structured version Visualization version GIF version | ||
| Description: The class of well-founded sets is transitive. (Contributed by Eric Schmidt, 9-Sep-2025.) |
| Ref | Expression |
|---|---|
| trwf | ⊢ Tr ∪ (𝑅1 “ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1elssi 9689 | . . 3 ⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → 𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ ∪ (𝑅1 “ On)𝑥 ⊆ ∪ (𝑅1 “ On) |
| 3 | dftr3 5200 | . 2 ⊢ (Tr ∪ (𝑅1 “ On) ↔ ∀𝑥 ∈ ∪ (𝑅1 “ On)𝑥 ⊆ ∪ (𝑅1 “ On)) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ Tr ∪ (𝑅1 “ On) |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wral 3044 ⊆ wss 3899 ∪ cuni 4856 Tr wtr 5195 “ cima 5616 Oncon0 6301 𝑅1cr1 9646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7343 df-om 7791 df-2nd 7916 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-r1 9648 |
| This theorem is referenced by: wfaxext 44983 wfaxrep 44984 wfaxpow 44987 wfaxinf2 44991 wfac8prim 44992 |
| Copyright terms: Public domain | W3C validator |