Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orbitcl Structured version   Visualization version   GIF version

Theorem orbitcl 44909
Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.)
Assertion
Ref Expression
orbitcl (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ (rec(𝐹, 𝐴) “ ω))

Proof of Theorem orbitcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8443 . . . . 5 (rec(𝐹, 𝐴) ↾ ω) Fn ω
2 fvelrnb 6935 . . . . 5 ((rec(𝐹, 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵))
31, 2ax-mp 5 . . . 4 (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵)
4 frsuc 8445 . . . . . . 7 (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)))
5 peano2 7880 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
6 fnfvelrn 7066 . . . . . . . 8 (((rec(𝐹, 𝐴) ↾ ω) Fn ω ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
71, 5, 6sylancr 587 . . . . . . 7 (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
84, 7eqeltrrd 2834 . . . . . 6 (𝑥 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
9 fveq2 6872 . . . . . . 7 (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) = (𝐹𝐵))
109eleq1d 2818 . . . . . 6 (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → ((𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)))
118, 10syl5ibcom 245 . . . . 5 (𝑥 ∈ ω → (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)))
1211rexlimiv 3132 . . . 4 (∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
133, 12sylbi 217 . . 3 (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
14 df-ima 5664 . . 3 (rec(𝐹, 𝐴) “ ω) = ran (rec(𝐹, 𝐴) ↾ ω)
1513, 14eleq2s 2851 . 2 (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
1615, 14eleqtrrdi 2844 1 (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ (rec(𝐹, 𝐴) “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2107  wrex 3059  ran crn 5652  cres 5653  cima 5654  suc csuc 6351   Fn wfn 6522  cfv 6527  ωcom 7855  reccrdg 8417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418
This theorem is referenced by:  orbitclmpt  44910
  Copyright terms: Public domain W3C validator