Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orbitcl Structured version   Visualization version   GIF version

Theorem orbitcl 44931
Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.)
Assertion
Ref Expression
orbitcl (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ (rec(𝐹, 𝐴) “ ω))

Proof of Theorem orbitcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8357 . . . . 5 (rec(𝐹, 𝐴) ↾ ω) Fn ω
2 fvelrnb 6883 . . . . 5 ((rec(𝐹, 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵))
31, 2ax-mp 5 . . . 4 (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵)
4 frsuc 8359 . . . . . . 7 (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)))
5 peano2 7823 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
6 fnfvelrn 7014 . . . . . . . 8 (((rec(𝐹, 𝐴) ↾ ω) Fn ω ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
71, 5, 6sylancr 587 . . . . . . 7 (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
84, 7eqeltrrd 2829 . . . . . 6 (𝑥 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
9 fveq2 6822 . . . . . . 7 (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) = (𝐹𝐵))
109eleq1d 2813 . . . . . 6 (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → ((𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)))
118, 10syl5ibcom 245 . . . . 5 (𝑥 ∈ ω → (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)))
1211rexlimiv 3123 . . . 4 (∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
133, 12sylbi 217 . . 3 (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
14 df-ima 5632 . . 3 (rec(𝐹, 𝐴) “ ω) = ran (rec(𝐹, 𝐴) ↾ ω)
1513, 14eleq2s 2846 . 2 (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))
1615, 14eleqtrrdi 2839 1 (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹𝐵) ∈ (rec(𝐹, 𝐴) “ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  ran crn 5620  cres 5621  cima 5622  suc csuc 6309   Fn wfn 6477  cfv 6482  ωcom 7799  reccrdg 8331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332
This theorem is referenced by:  orbitclmpt  44932
  Copyright terms: Public domain W3C validator