| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orbitcl | Structured version Visualization version GIF version | ||
| Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| orbitcl | ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8405 | . . . . 5 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω | |
| 2 | fvelrnb 6923 | . . . . 5 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵) |
| 4 | frsuc 8407 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥))) | |
| 5 | peano2 7868 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 6 | fnfvelrn 7054 | . . . . . . . 8 ⊢ (((rec(𝐹, 𝐴) ↾ ω) Fn ω ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 8 | 4, 7 | eqeltrrd 2830 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 9 | fveq2 6860 | . . . . . . 7 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) = (𝐹‘𝐵)) | |
| 10 | 9 | eleq1d 2814 | . . . . . 6 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → ((𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 11 | 8, 10 | syl5ibcom 245 | . . . . 5 ⊢ (𝑥 ∈ ω → (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 12 | 11 | rexlimiv 3128 | . . . 4 ⊢ (∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 13 | 3, 12 | sylbi 217 | . . 3 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 14 | df-ima 5653 | . . 3 ⊢ (rec(𝐹, 𝐴) “ ω) = ran (rec(𝐹, 𝐴) ↾ ω) | |
| 15 | 13, 14 | eleq2s 2847 | . 2 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 16 | 15, 14 | eleqtrrdi 2840 | 1 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ran crn 5641 ↾ cres 5642 “ cima 5643 suc csuc 6336 Fn wfn 6508 ‘cfv 6513 ωcom 7844 reccrdg 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 |
| This theorem is referenced by: orbitclmpt 44941 |
| Copyright terms: Public domain | W3C validator |