| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orbitcl | Structured version Visualization version GIF version | ||
| Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| orbitcl | ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8357 | . . . . 5 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω | |
| 2 | fvelrnb 6883 | . . . . 5 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵) |
| 4 | frsuc 8359 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥))) | |
| 5 | peano2 7823 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 6 | fnfvelrn 7014 | . . . . . . . 8 ⊢ (((rec(𝐹, 𝐴) ↾ ω) Fn ω ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 8 | 4, 7 | eqeltrrd 2829 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 9 | fveq2 6822 | . . . . . . 7 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) = (𝐹‘𝐵)) | |
| 10 | 9 | eleq1d 2813 | . . . . . 6 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → ((𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 11 | 8, 10 | syl5ibcom 245 | . . . . 5 ⊢ (𝑥 ∈ ω → (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 12 | 11 | rexlimiv 3123 | . . . 4 ⊢ (∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 13 | 3, 12 | sylbi 217 | . . 3 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 14 | df-ima 5632 | . . 3 ⊢ (rec(𝐹, 𝐴) “ ω) = ran (rec(𝐹, 𝐴) ↾ ω) | |
| 15 | 13, 14 | eleq2s 2846 | . 2 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 16 | 15, 14 | eleqtrrdi 2839 | 1 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ran crn 5620 ↾ cres 5621 “ cima 5622 suc csuc 6309 Fn wfn 6477 ‘cfv 6482 ωcom 7799 reccrdg 8331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 |
| This theorem is referenced by: orbitclmpt 44932 |
| Copyright terms: Public domain | W3C validator |