| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orbitcl | Structured version Visualization version GIF version | ||
| Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| orbitcl | ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8363 | . . . . 5 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω | |
| 2 | fvelrnb 6891 | . . . . 5 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵) |
| 4 | frsuc 8365 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥))) | |
| 5 | peano2 7829 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 6 | fnfvelrn 7022 | . . . . . . . 8 ⊢ (((rec(𝐹, 𝐴) ↾ ω) Fn ω ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 8 | 4, 7 | eqeltrrd 2834 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 9 | fveq2 6831 | . . . . . . 7 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) = (𝐹‘𝐵)) | |
| 10 | 9 | eleq1d 2818 | . . . . . 6 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → ((𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 11 | 8, 10 | syl5ibcom 245 | . . . . 5 ⊢ (𝑥 ∈ ω → (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 12 | 11 | rexlimiv 3127 | . . . 4 ⊢ (∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 13 | 3, 12 | sylbi 217 | . . 3 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 14 | df-ima 5634 | . . 3 ⊢ (rec(𝐹, 𝐴) “ ω) = ran (rec(𝐹, 𝐴) ↾ ω) | |
| 15 | 13, 14 | eleq2s 2851 | . 2 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 16 | 15, 14 | eleqtrrdi 2844 | 1 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ran crn 5622 ↾ cres 5623 “ cima 5624 suc csuc 6316 Fn wfn 6484 ‘cfv 6489 ωcom 7805 reccrdg 8337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 |
| This theorem is referenced by: orbitclmpt 45115 |
| Copyright terms: Public domain | W3C validator |