| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orbitcl | Structured version Visualization version GIF version | ||
| Description: The orbit under a function is closed under the function. (Contributed by Eric Schmidt, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| orbitcl | ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8443 | . . . . 5 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω | |
| 2 | fvelrnb 6935 | . . . . 5 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω → (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ ∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵) |
| 4 | frsuc 8445 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) = (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥))) | |
| 5 | peano2 7880 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
| 6 | fnfvelrn 7066 | . . . . . . . 8 ⊢ (((rec(𝐹, 𝐴) ↾ ω) Fn ω ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) | |
| 7 | 1, 5, 6 | sylancr 587 | . . . . . . 7 ⊢ (𝑥 ∈ ω → ((rec(𝐹, 𝐴) ↾ ω)‘suc 𝑥) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 8 | 4, 7 | eqeltrrd 2834 | . . . . . 6 ⊢ (𝑥 ∈ ω → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 9 | fveq2 6872 | . . . . . . 7 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) = (𝐹‘𝐵)) | |
| 10 | 9 | eleq1d 2818 | . . . . . 6 ⊢ (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → ((𝐹‘((rec(𝐹, 𝐴) ↾ ω)‘𝑥)) ∈ ran (rec(𝐹, 𝐴) ↾ ω) ↔ (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 11 | 8, 10 | syl5ibcom 245 | . . . . 5 ⊢ (𝑥 ∈ ω → (((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω))) |
| 12 | 11 | rexlimiv 3132 | . . . 4 ⊢ (∃𝑥 ∈ ω ((rec(𝐹, 𝐴) ↾ ω)‘𝑥) = 𝐵 → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 13 | 3, 12 | sylbi 217 | . . 3 ⊢ (𝐵 ∈ ran (rec(𝐹, 𝐴) ↾ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 14 | df-ima 5664 | . . 3 ⊢ (rec(𝐹, 𝐴) “ ω) = ran (rec(𝐹, 𝐴) ↾ ω) | |
| 15 | 13, 14 | eleq2s 2851 | . 2 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ ran (rec(𝐹, 𝐴) ↾ ω)) |
| 16 | 15, 14 | eleqtrrdi 2844 | 1 ⊢ (𝐵 ∈ (rec(𝐹, 𝐴) “ ω) → (𝐹‘𝐵) ∈ (rec(𝐹, 𝐴) “ ω)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ran crn 5652 ↾ cres 5653 “ cima 5654 suc csuc 6351 Fn wfn 6522 ‘cfv 6527 ωcom 7855 reccrdg 8417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 |
| This theorem is referenced by: orbitclmpt 44910 |
| Copyright terms: Public domain | W3C validator |