| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtr3ncomlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for pmtr3ncom 19391. (Contributed by AV, 17-Mar-2018.) |
| Ref | Expression |
|---|---|
| pmtr3ncom.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtr3ncom.f | ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) |
| pmtr3ncom.g | ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) |
| Ref | Expression |
|---|---|
| pmtr3ncomlem2 | ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtr3ncom.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | pmtr3ncom.f | . . 3 ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) | |
| 3 | pmtr3ncom.g | . . 3 ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) | |
| 4 | 1, 2, 3 | pmtr3ncomlem1 19389 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋)) |
| 5 | fveq1 6829 | . . 3 ⊢ ((𝐺 ∘ 𝐹) = (𝐹 ∘ 𝐺) → ((𝐺 ∘ 𝐹)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑋)) | |
| 6 | 5 | necon3i 2961 | . 2 ⊢ (((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {cpr 4579 ∘ ccom 5625 ‘cfv 6488 pmTrspcpmtr 19357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-om 7805 df-1o 8393 df-2o 8394 df-en 8878 df-pmtr 19358 |
| This theorem is referenced by: pmtr3ncom 19391 |
| Copyright terms: Public domain | W3C validator |