Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmtr3ncomlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for pmtr3ncom 19064. (Contributed by AV, 17-Mar-2018.) |
Ref | Expression |
---|---|
pmtr3ncom.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtr3ncom.f | ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) |
pmtr3ncom.g | ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) |
Ref | Expression |
---|---|
pmtr3ncomlem2 | ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtr3ncom.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | pmtr3ncom.f | . . 3 ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) | |
3 | pmtr3ncom.g | . . 3 ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) | |
4 | 1, 2, 3 | pmtr3ncomlem1 19062 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋)) |
5 | fveq1 6767 | . . 3 ⊢ ((𝐺 ∘ 𝐹) = (𝐹 ∘ 𝐺) → ((𝐺 ∘ 𝐹)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑋)) | |
6 | 5 | necon3i 2977 | . 2 ⊢ (((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
7 | 4, 6 | syl 17 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 {cpr 4568 ∘ ccom 5592 ‘cfv 6430 pmTrspcpmtr 19030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-om 7701 df-1o 8281 df-2o 8282 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pmtr 19031 |
This theorem is referenced by: pmtr3ncom 19064 |
Copyright terms: Public domain | W3C validator |