![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmtr3ncomlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for pmtr3ncom 18204. (Contributed by AV, 17-Mar-2018.) |
Ref | Expression |
---|---|
pmtr3ncom.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
pmtr3ncom.f | ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) |
pmtr3ncom.g | ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) |
Ref | Expression |
---|---|
pmtr3ncomlem2 | ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtr3ncom.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
2 | pmtr3ncom.f | . . 3 ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) | |
3 | pmtr3ncom.g | . . 3 ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) | |
4 | 1, 2, 3 | pmtr3ncomlem1 18202 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋)) |
5 | fveq1 6409 | . . 3 ⊢ ((𝐺 ∘ 𝐹) = (𝐹 ∘ 𝐺) → ((𝐺 ∘ 𝐹)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑋)) | |
6 | 5 | necon3i 3002 | . 2 ⊢ (((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
7 | 4, 6 | syl 17 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2970 {cpr 4369 ∘ ccom 5315 ‘cfv 6100 pmTrspcpmtr 18170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-om 7299 df-1o 7798 df-2o 7799 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-pmtr 18171 |
This theorem is referenced by: pmtr3ncom 18204 |
Copyright terms: Public domain | W3C validator |