MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncomlem2 Structured version   Visualization version   GIF version

Theorem pmtr3ncomlem2 19410
Description: Lemma 2 for pmtr3ncom 19411. (Contributed by AV, 17-Mar-2018.)
Hypotheses
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
pmtr3ncom.f 𝐹 = (𝑇‘{𝑋, 𝑌})
pmtr3ncom.g 𝐺 = (𝑇‘{𝑌, 𝑍})
Assertion
Ref Expression
pmtr3ncomlem2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝐹) ≠ (𝐹𝐺))

Proof of Theorem pmtr3ncomlem2
StepHypRef Expression
1 pmtr3ncom.t . . 3 𝑇 = (pmTrsp‘𝐷)
2 pmtr3ncom.f . . 3 𝐹 = (𝑇‘{𝑋, 𝑌})
3 pmtr3ncom.g . . 3 𝐺 = (𝑇‘{𝑌, 𝑍})
41, 2, 3pmtr3ncomlem1 19409 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))
5 fveq1 6859 . . 3 ((𝐺𝐹) = (𝐹𝐺) → ((𝐺𝐹)‘𝑋) = ((𝐹𝐺)‘𝑋))
65necon3i 2958 . 2 (((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋) → (𝐺𝐹) ≠ (𝐹𝐺))
74, 6syl 17 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝐹) ≠ (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {cpr 4593  ccom 5644  cfv 6513  pmTrspcpmtr 19377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-om 7845  df-1o 8436  df-2o 8437  df-en 8921  df-pmtr 19378
This theorem is referenced by:  pmtr3ncom  19411
  Copyright terms: Public domain W3C validator