MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncomlem2 Structured version   Visualization version   GIF version

Theorem pmtr3ncomlem2 19411
Description: Lemma 2 for pmtr3ncom 19412. (Contributed by AV, 17-Mar-2018.)
Hypotheses
Ref Expression
pmtr3ncom.t 𝑇 = (pmTrsp‘𝐷)
pmtr3ncom.f 𝐹 = (𝑇‘{𝑋, 𝑌})
pmtr3ncom.g 𝐺 = (𝑇‘{𝑌, 𝑍})
Assertion
Ref Expression
pmtr3ncomlem2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝐹) ≠ (𝐹𝐺))

Proof of Theorem pmtr3ncomlem2
StepHypRef Expression
1 pmtr3ncom.t . . 3 𝑇 = (pmTrsp‘𝐷)
2 pmtr3ncom.f . . 3 𝐹 = (𝑇‘{𝑋, 𝑌})
3 pmtr3ncom.g . . 3 𝐺 = (𝑇‘{𝑌, 𝑍})
41, 2, 3pmtr3ncomlem1 19410 . 2 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → ((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋))
5 fveq1 6860 . . 3 ((𝐺𝐹) = (𝐹𝐺) → ((𝐺𝐹)‘𝑋) = ((𝐹𝐺)‘𝑋))
65necon3i 2958 . 2 (((𝐺𝐹)‘𝑋) ≠ ((𝐹𝐺)‘𝑋) → (𝐺𝐹) ≠ (𝐹𝐺))
74, 6syl 17 1 ((𝐷𝑉 ∧ (𝑋𝐷𝑌𝐷𝑍𝐷) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐺𝐹) ≠ (𝐹𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {cpr 4594  ccom 5645  cfv 6514  pmTrspcpmtr 19378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-pmtr 19379
This theorem is referenced by:  pmtr3ncom  19412
  Copyright terms: Public domain W3C validator