| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmtr3ncomlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for pmtr3ncom 19405. (Contributed by AV, 17-Mar-2018.) |
| Ref | Expression |
|---|---|
| pmtr3ncom.t | ⊢ 𝑇 = (pmTrsp‘𝐷) |
| pmtr3ncom.f | ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) |
| pmtr3ncom.g | ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) |
| Ref | Expression |
|---|---|
| pmtr3ncomlem2 | ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmtr3ncom.t | . . 3 ⊢ 𝑇 = (pmTrsp‘𝐷) | |
| 2 | pmtr3ncom.f | . . 3 ⊢ 𝐹 = (𝑇‘{𝑋, 𝑌}) | |
| 3 | pmtr3ncom.g | . . 3 ⊢ 𝐺 = (𝑇‘{𝑌, 𝑍}) | |
| 4 | 1, 2, 3 | pmtr3ncomlem1 19403 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → ((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋)) |
| 5 | fveq1 6857 | . . 3 ⊢ ((𝐺 ∘ 𝐹) = (𝐹 ∘ 𝐺) → ((𝐺 ∘ 𝐹)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑋)) | |
| 6 | 5 | necon3i 2957 | . 2 ⊢ (((𝐺 ∘ 𝐹)‘𝑋) ≠ ((𝐹 ∘ 𝐺)‘𝑋) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷) ∧ (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍)) → (𝐺 ∘ 𝐹) ≠ (𝐹 ∘ 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {cpr 4591 ∘ ccom 5642 ‘cfv 6511 pmTrspcpmtr 19371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-2o 8435 df-en 8919 df-pmtr 19372 |
| This theorem is referenced by: pmtr3ncom 19405 |
| Copyright terms: Public domain | W3C validator |