MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodfac Structured version   Visualization version   GIF version

Theorem fprodfac 15318
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Distinct variable group:   𝐴,𝑘

Proof of Theorem fprodfac
StepHypRef Expression
1 elnn0 11887 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 facnn 13631 . . . 4 (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴))
3 vex 3472 . . . . . 6 𝑘 ∈ V
4 fvi 6722 . . . . . 6 (𝑘 ∈ V → ( I ‘𝑘) = 𝑘)
53, 4mp1i 13 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘)
6 elnnuz 12270 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
76biimpi 219 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
8 elfznn 12931 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
98nncnd 11641 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
109adantl 485 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
115, 7, 10fprodser 15294 . . . 4 (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴))
122, 11eqtr4d 2860 . . 3 (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
13 prod0 15288 . . . . 5 𝑘 ∈ ∅ 𝑘 = 1
1413eqcomi 2831 . . . 4 1 = ∏𝑘 ∈ ∅ 𝑘
15 fveq2 6652 . . . . 5 (𝐴 = 0 → (!‘𝐴) = (!‘0))
16 fac0 13632 . . . . 5 (!‘0) = 1
1715, 16syl6eq 2873 . . . 4 (𝐴 = 0 → (!‘𝐴) = 1)
18 oveq2 7148 . . . . . 6 (𝐴 = 0 → (1...𝐴) = (1...0))
19 fz10 12923 . . . . . 6 (1...0) = ∅
2018, 19syl6eq 2873 . . . . 5 (𝐴 = 0 → (1...𝐴) = ∅)
2120prodeq1d 15266 . . . 4 (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘)
2214, 17, 213eqtr4a 2883 . . 3 (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
2312, 22jaoi 854 . 2 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
241, 23sylbi 220 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2114  Vcvv 3469  c0 4265   I cid 5436  cfv 6334  (class class class)co 7140  cc 10524  0cc0 10526  1c1 10527   · cmul 10531  cn 11625  0cn0 11885  cuz 12231  ...cfz 12885  seqcseq 13364  !cfa 13629  cprod 15250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-prod 15251
This theorem is referenced by:  risefacfac  15380  fallfacval4  15388  prmolefac  16371  gausslemma2dlem1  25948  gausslemma2dlem6  25954  bcprod  33044  etransclem41  42856
  Copyright terms: Public domain W3C validator