Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fprodfac | Structured version Visualization version GIF version |
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
fprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12244 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | facnn 13998 | . . . 4 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴)) | |
3 | vex 3437 | . . . . . 6 ⊢ 𝑘 ∈ V | |
4 | fvi 6853 | . . . . . 6 ⊢ (𝑘 ∈ V → ( I ‘𝑘) = 𝑘) | |
5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘) |
6 | elnnuz 12631 | . . . . . 6 ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ≥‘1)) | |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ≥‘1)) |
8 | elfznn 13294 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ) | |
9 | 8 | nncnd 11998 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ) |
11 | 5, 7, 10 | fprodser 15668 | . . . 4 ⊢ (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴)) |
12 | 2, 11 | eqtr4d 2782 | . . 3 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
13 | prod0 15662 | . . . . 5 ⊢ ∏𝑘 ∈ ∅ 𝑘 = 1 | |
14 | 13 | eqcomi 2748 | . . . 4 ⊢ 1 = ∏𝑘 ∈ ∅ 𝑘 |
15 | fveq2 6783 | . . . . 5 ⊢ (𝐴 = 0 → (!‘𝐴) = (!‘0)) | |
16 | fac0 13999 | . . . . 5 ⊢ (!‘0) = 1 | |
17 | 15, 16 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = 0 → (!‘𝐴) = 1) |
18 | oveq2 7292 | . . . . . 6 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
19 | fz10 13286 | . . . . . 6 ⊢ (1...0) = ∅ | |
20 | 18, 19 | eqtrdi 2795 | . . . . 5 ⊢ (𝐴 = 0 → (1...𝐴) = ∅) |
21 | 20 | prodeq1d 15640 | . . . 4 ⊢ (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘) |
22 | 14, 17, 21 | 3eqtr4a 2805 | . . 3 ⊢ (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
23 | 12, 22 | jaoi 854 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
24 | 1, 23 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ∅c0 4257 I cid 5489 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 0cc0 10880 1c1 10881 · cmul 10885 ℕcn 11982 ℕ0cn0 12242 ℤ≥cuz 12591 ...cfz 13248 seqcseq 13730 !cfa 13996 ∏cprod 15624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-z 12329 df-uz 12592 df-rp 12740 df-fz 13249 df-fzo 13392 df-seq 13731 df-exp 13792 df-fac 13997 df-hash 14054 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-clim 15206 df-prod 15625 |
This theorem is referenced by: risefacfac 15754 fallfacval4 15762 prmolefac 16756 gausslemma2dlem1 26523 gausslemma2dlem6 26529 bcprod 33713 etransclem41 43823 |
Copyright terms: Public domain | W3C validator |