| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodfac | Structured version Visualization version GIF version | ||
| Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
| Ref | Expression |
|---|---|
| fprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12386 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
| 2 | facnn 14182 | . . . 4 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴)) | |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑘 ∈ V | |
| 4 | fvi 6899 | . . . . . 6 ⊢ (𝑘 ∈ V → ( I ‘𝑘) = 𝑘) | |
| 5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘) |
| 6 | elnnuz 12779 | . . . . . 6 ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ≥‘1)) | |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ≥‘1)) |
| 8 | elfznn 13456 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ) | |
| 9 | 8 | nncnd 12144 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ) |
| 11 | 5, 7, 10 | fprodser 15856 | . . . 4 ⊢ (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴)) |
| 12 | 2, 11 | eqtr4d 2767 | . . 3 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| 13 | prod0 15850 | . . . . 5 ⊢ ∏𝑘 ∈ ∅ 𝑘 = 1 | |
| 14 | 13 | eqcomi 2738 | . . . 4 ⊢ 1 = ∏𝑘 ∈ ∅ 𝑘 |
| 15 | fveq2 6822 | . . . . 5 ⊢ (𝐴 = 0 → (!‘𝐴) = (!‘0)) | |
| 16 | fac0 14183 | . . . . 5 ⊢ (!‘0) = 1 | |
| 17 | 15, 16 | eqtrdi 2780 | . . . 4 ⊢ (𝐴 = 0 → (!‘𝐴) = 1) |
| 18 | oveq2 7357 | . . . . . 6 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
| 19 | fz10 13448 | . . . . . 6 ⊢ (1...0) = ∅ | |
| 20 | 18, 19 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 = 0 → (1...𝐴) = ∅) |
| 21 | 20 | prodeq1d 15827 | . . . 4 ⊢ (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘) |
| 22 | 14, 17, 21 | 3eqtr4a 2790 | . . 3 ⊢ (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| 23 | 12, 22 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| 24 | 1, 23 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 I cid 5513 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 · cmul 11014 ℕcn 12128 ℕ0cn0 12384 ℤ≥cuz 12735 ...cfz 13410 seqcseq 13908 !cfa 14180 ∏cprod 15810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-prod 15811 |
| This theorem is referenced by: risefacfac 15942 fallfacval4 15950 prmolefac 16958 gausslemma2dlem1 27275 gausslemma2dlem6 27281 bcprod 35711 etransclem41 46256 |
| Copyright terms: Public domain | W3C validator |