MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodfac Structured version   Visualization version   GIF version

Theorem fprodfac 15106
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Distinct variable group:   𝐴,𝑘

Proof of Theorem fprodfac
StepHypRef Expression
1 elnn0 11644 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 facnn 13380 . . . 4 (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴))
3 vex 3400 . . . . . 6 𝑘 ∈ V
4 fvi 6515 . . . . . 6 (𝑘 ∈ V → ( I ‘𝑘) = 𝑘)
53, 4mp1i 13 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘)
6 elnnuz 12030 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
76biimpi 208 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
8 elfznn 12687 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
98nncnd 11392 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
109adantl 475 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
115, 7, 10fprodser 15082 . . . 4 (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴))
122, 11eqtr4d 2816 . . 3 (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
13 prod0 15076 . . . . 5 𝑘 ∈ ∅ 𝑘 = 1
1413eqcomi 2786 . . . 4 1 = ∏𝑘 ∈ ∅ 𝑘
15 fveq2 6446 . . . . 5 (𝐴 = 0 → (!‘𝐴) = (!‘0))
16 fac0 13381 . . . . 5 (!‘0) = 1
1715, 16syl6eq 2829 . . . 4 (𝐴 = 0 → (!‘𝐴) = 1)
18 oveq2 6930 . . . . . 6 (𝐴 = 0 → (1...𝐴) = (1...0))
19 fz10 12679 . . . . . 6 (1...0) = ∅
2018, 19syl6eq 2829 . . . . 5 (𝐴 = 0 → (1...𝐴) = ∅)
2120prodeq1d 15054 . . . 4 (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘)
2214, 17, 213eqtr4a 2839 . . 3 (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
2312, 22jaoi 846 . 2 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
241, 23sylbi 209 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wcel 2106  Vcvv 3397  c0 4140   I cid 5260  cfv 6135  (class class class)co 6922  cc 10270  0cc0 10272  1c1 10273   · cmul 10277  cn 11374  0cn0 11642  cuz 11992  ...cfz 12643  seqcseq 13119  !cfa 13378  cprod 15038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-fac 13379  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-prod 15039
This theorem is referenced by:  risefacfac  15168  fallfacval4  15176  prmolefac  16154  gausslemma2dlem1  25543  gausslemma2dlem6  25549  bcprod  32232  etransclem41  41411
  Copyright terms: Public domain W3C validator