MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodfac Structured version   Visualization version   GIF version

Theorem fprodfac 15880
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Distinct variable group:   𝐴,𝑘

Proof of Theorem fprodfac
StepHypRef Expression
1 elnn0 12383 . 2 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0))
2 facnn 14182 . . . 4 (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴))
3 vex 3440 . . . . . 6 𝑘 ∈ V
4 fvi 6898 . . . . . 6 (𝑘 ∈ V → ( I ‘𝑘) = 𝑘)
53, 4mp1i 13 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘)
6 elnnuz 12776 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
76biimpi 216 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
8 elfznn 13453 . . . . . . 7 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
98nncnd 12141 . . . . . 6 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ)
109adantl 481 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ)
115, 7, 10fprodser 15856 . . . 4 (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴))
122, 11eqtr4d 2769 . . 3 (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
13 prod0 15850 . . . . 5 𝑘 ∈ ∅ 𝑘 = 1
1413eqcomi 2740 . . . 4 1 = ∏𝑘 ∈ ∅ 𝑘
15 fveq2 6822 . . . . 5 (𝐴 = 0 → (!‘𝐴) = (!‘0))
16 fac0 14183 . . . . 5 (!‘0) = 1
1715, 16eqtrdi 2782 . . . 4 (𝐴 = 0 → (!‘𝐴) = 1)
18 oveq2 7354 . . . . . 6 (𝐴 = 0 → (1...𝐴) = (1...0))
19 fz10 13445 . . . . . 6 (1...0) = ∅
2018, 19eqtrdi 2782 . . . . 5 (𝐴 = 0 → (1...𝐴) = ∅)
2120prodeq1d 15827 . . . 4 (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘)
2214, 17, 213eqtr4a 2792 . . 3 (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
2312, 22jaoi 857 . 2 ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
241, 23sylbi 217 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280   I cid 5508  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   · cmul 11011  cn 12125  0cn0 12381  cuz 12732  ...cfz 13407  seqcseq 13908  !cfa 14180  cprod 15810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811
This theorem is referenced by:  risefacfac  15942  fallfacval4  15950  prmolefac  16958  gausslemma2dlem1  27304  gausslemma2dlem6  27310  bcprod  35782  etransclem41  46321
  Copyright terms: Public domain W3C validator