![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodfac | Structured version Visualization version GIF version |
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
fprodfac | โข (๐ด โ โ0 โ (!โ๐ด) = โ๐ โ (1...๐ด)๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12479 | . 2 โข (๐ด โ โ0 โ (๐ด โ โ โจ ๐ด = 0)) | |
2 | facnn 14240 | . . . 4 โข (๐ด โ โ โ (!โ๐ด) = (seq1( ยท , I )โ๐ด)) | |
3 | vex 3477 | . . . . . 6 โข ๐ โ V | |
4 | fvi 6967 | . . . . . 6 โข (๐ โ V โ ( I โ๐) = ๐) | |
5 | 3, 4 | mp1i 13 | . . . . 5 โข ((๐ด โ โ โง ๐ โ (1...๐ด)) โ ( I โ๐) = ๐) |
6 | elnnuz 12871 | . . . . . 6 โข (๐ด โ โ โ ๐ด โ (โคโฅโ1)) | |
7 | 6 | biimpi 215 | . . . . 5 โข (๐ด โ โ โ ๐ด โ (โคโฅโ1)) |
8 | elfznn 13535 | . . . . . . 7 โข (๐ โ (1...๐ด) โ ๐ โ โ) | |
9 | 8 | nncnd 12233 | . . . . . 6 โข (๐ โ (1...๐ด) โ ๐ โ โ) |
10 | 9 | adantl 481 | . . . . 5 โข ((๐ด โ โ โง ๐ โ (1...๐ด)) โ ๐ โ โ) |
11 | 5, 7, 10 | fprodser 15898 | . . . 4 โข (๐ด โ โ โ โ๐ โ (1...๐ด)๐ = (seq1( ยท , I )โ๐ด)) |
12 | 2, 11 | eqtr4d 2774 | . . 3 โข (๐ด โ โ โ (!โ๐ด) = โ๐ โ (1...๐ด)๐) |
13 | prod0 15892 | . . . . 5 โข โ๐ โ โ ๐ = 1 | |
14 | 13 | eqcomi 2740 | . . . 4 โข 1 = โ๐ โ โ ๐ |
15 | fveq2 6891 | . . . . 5 โข (๐ด = 0 โ (!โ๐ด) = (!โ0)) | |
16 | fac0 14241 | . . . . 5 โข (!โ0) = 1 | |
17 | 15, 16 | eqtrdi 2787 | . . . 4 โข (๐ด = 0 โ (!โ๐ด) = 1) |
18 | oveq2 7420 | . . . . . 6 โข (๐ด = 0 โ (1...๐ด) = (1...0)) | |
19 | fz10 13527 | . . . . . 6 โข (1...0) = โ | |
20 | 18, 19 | eqtrdi 2787 | . . . . 5 โข (๐ด = 0 โ (1...๐ด) = โ ) |
21 | 20 | prodeq1d 15870 | . . . 4 โข (๐ด = 0 โ โ๐ โ (1...๐ด)๐ = โ๐ โ โ ๐) |
22 | 14, 17, 21 | 3eqtr4a 2797 | . . 3 โข (๐ด = 0 โ (!โ๐ด) = โ๐ โ (1...๐ด)๐) |
23 | 12, 22 | jaoi 854 | . 2 โข ((๐ด โ โ โจ ๐ด = 0) โ (!โ๐ด) = โ๐ โ (1...๐ด)๐) |
24 | 1, 23 | sylbi 216 | 1 โข (๐ด โ โ0 โ (!โ๐ด) = โ๐ โ (1...๐ด)๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 โจ wo 844 = wceq 1540 โ wcel 2105 Vcvv 3473 โ c0 4322 I cid 5573 โcfv 6543 (class class class)co 7412 โcc 11111 0cc0 11113 1c1 11114 ยท cmul 11118 โcn 12217 โ0cn0 12477 โคโฅcuz 12827 ...cfz 13489 seqcseq 13971 !cfa 14238 โcprod 15854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-fac 14239 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-prod 15855 |
This theorem is referenced by: risefacfac 15984 fallfacval4 15992 prmolefac 16984 gausslemma2dlem1 27106 gausslemma2dlem6 27112 bcprod 35013 etransclem41 45290 |
Copyright terms: Public domain | W3C validator |