| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodfac | Structured version Visualization version GIF version | ||
| Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
| Ref | Expression |
|---|---|
| fprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12383 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
| 2 | facnn 14182 | . . . 4 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴)) | |
| 3 | vex 3440 | . . . . . 6 ⊢ 𝑘 ∈ V | |
| 4 | fvi 6898 | . . . . . 6 ⊢ (𝑘 ∈ V → ( I ‘𝑘) = 𝑘) | |
| 5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘) |
| 6 | elnnuz 12776 | . . . . . 6 ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ≥‘1)) | |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ≥‘1)) |
| 8 | elfznn 13453 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ) | |
| 9 | 8 | nncnd 12141 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ) |
| 11 | 5, 7, 10 | fprodser 15856 | . . . 4 ⊢ (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴)) |
| 12 | 2, 11 | eqtr4d 2769 | . . 3 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| 13 | prod0 15850 | . . . . 5 ⊢ ∏𝑘 ∈ ∅ 𝑘 = 1 | |
| 14 | 13 | eqcomi 2740 | . . . 4 ⊢ 1 = ∏𝑘 ∈ ∅ 𝑘 |
| 15 | fveq2 6822 | . . . . 5 ⊢ (𝐴 = 0 → (!‘𝐴) = (!‘0)) | |
| 16 | fac0 14183 | . . . . 5 ⊢ (!‘0) = 1 | |
| 17 | 15, 16 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 = 0 → (!‘𝐴) = 1) |
| 18 | oveq2 7354 | . . . . . 6 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
| 19 | fz10 13445 | . . . . . 6 ⊢ (1...0) = ∅ | |
| 20 | 18, 19 | eqtrdi 2782 | . . . . 5 ⊢ (𝐴 = 0 → (1...𝐴) = ∅) |
| 21 | 20 | prodeq1d 15827 | . . . 4 ⊢ (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘) |
| 22 | 14, 17, 21 | 3eqtr4a 2792 | . . 3 ⊢ (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| 23 | 12, 22 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| 24 | 1, 23 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 I cid 5508 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 · cmul 11011 ℕcn 12125 ℕ0cn0 12381 ℤ≥cuz 12732 ...cfz 13407 seqcseq 13908 !cfa 14180 ∏cprod 15810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-prod 15811 |
| This theorem is referenced by: risefacfac 15942 fallfacval4 15950 prmolefac 16958 gausslemma2dlem1 27304 gausslemma2dlem6 27310 bcprod 35782 etransclem41 46321 |
| Copyright terms: Public domain | W3C validator |