Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fprodfac | Structured version Visualization version GIF version |
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
fprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12165 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | facnn 13917 | . . . 4 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴)) | |
3 | vex 3426 | . . . . . 6 ⊢ 𝑘 ∈ V | |
4 | fvi 6826 | . . . . . 6 ⊢ (𝑘 ∈ V → ( I ‘𝑘) = 𝑘) | |
5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘) |
6 | elnnuz 12551 | . . . . . 6 ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ≥‘1)) | |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ≥‘1)) |
8 | elfznn 13214 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ) | |
9 | 8 | nncnd 11919 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ) |
11 | 5, 7, 10 | fprodser 15587 | . . . 4 ⊢ (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴)) |
12 | 2, 11 | eqtr4d 2781 | . . 3 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
13 | prod0 15581 | . . . . 5 ⊢ ∏𝑘 ∈ ∅ 𝑘 = 1 | |
14 | 13 | eqcomi 2747 | . . . 4 ⊢ 1 = ∏𝑘 ∈ ∅ 𝑘 |
15 | fveq2 6756 | . . . . 5 ⊢ (𝐴 = 0 → (!‘𝐴) = (!‘0)) | |
16 | fac0 13918 | . . . . 5 ⊢ (!‘0) = 1 | |
17 | 15, 16 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = 0 → (!‘𝐴) = 1) |
18 | oveq2 7263 | . . . . . 6 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
19 | fz10 13206 | . . . . . 6 ⊢ (1...0) = ∅ | |
20 | 18, 19 | eqtrdi 2795 | . . . . 5 ⊢ (𝐴 = 0 → (1...𝐴) = ∅) |
21 | 20 | prodeq1d 15559 | . . . 4 ⊢ (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘) |
22 | 14, 17, 21 | 3eqtr4a 2805 | . . 3 ⊢ (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
23 | 12, 22 | jaoi 853 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
24 | 1, 23 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 I cid 5479 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 · cmul 10807 ℕcn 11903 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 !cfa 13915 ∏cprod 15543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-fac 13916 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-prod 15544 |
This theorem is referenced by: risefacfac 15673 fallfacval4 15681 prmolefac 16675 gausslemma2dlem1 26419 gausslemma2dlem6 26425 bcprod 33610 etransclem41 43706 |
Copyright terms: Public domain | W3C validator |