Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fprodfac | Structured version Visualization version GIF version |
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
fprodfac | ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12305 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) | |
2 | facnn 14059 | . . . 4 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = (seq1( · , I )‘𝐴)) | |
3 | vex 3445 | . . . . . 6 ⊢ 𝑘 ∈ V | |
4 | fvi 6881 | . . . . . 6 ⊢ (𝑘 ∈ V → ( I ‘𝑘) = 𝑘) | |
5 | 3, 4 | mp1i 13 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ( I ‘𝑘) = 𝑘) |
6 | elnnuz 12692 | . . . . . 6 ⊢ (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ≥‘1)) | |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ≥‘1)) |
8 | elfznn 13355 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ) | |
9 | 8 | nncnd 12059 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℂ) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℂ) |
11 | 5, 7, 10 | fprodser 15728 | . . . 4 ⊢ (𝐴 ∈ ℕ → ∏𝑘 ∈ (1...𝐴)𝑘 = (seq1( · , I )‘𝐴)) |
12 | 2, 11 | eqtr4d 2780 | . . 3 ⊢ (𝐴 ∈ ℕ → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
13 | prod0 15722 | . . . . 5 ⊢ ∏𝑘 ∈ ∅ 𝑘 = 1 | |
14 | 13 | eqcomi 2746 | . . . 4 ⊢ 1 = ∏𝑘 ∈ ∅ 𝑘 |
15 | fveq2 6809 | . . . . 5 ⊢ (𝐴 = 0 → (!‘𝐴) = (!‘0)) | |
16 | fac0 14060 | . . . . 5 ⊢ (!‘0) = 1 | |
17 | 15, 16 | eqtrdi 2793 | . . . 4 ⊢ (𝐴 = 0 → (!‘𝐴) = 1) |
18 | oveq2 7321 | . . . . . 6 ⊢ (𝐴 = 0 → (1...𝐴) = (1...0)) | |
19 | fz10 13347 | . . . . . 6 ⊢ (1...0) = ∅ | |
20 | 18, 19 | eqtrdi 2793 | . . . . 5 ⊢ (𝐴 = 0 → (1...𝐴) = ∅) |
21 | 20 | prodeq1d 15700 | . . . 4 ⊢ (𝐴 = 0 → ∏𝑘 ∈ (1...𝐴)𝑘 = ∏𝑘 ∈ ∅ 𝑘) |
22 | 14, 17, 21 | 3eqtr4a 2803 | . . 3 ⊢ (𝐴 = 0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
23 | 12, 22 | jaoi 854 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 = 0) → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
24 | 1, 23 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4266 I cid 5504 ‘cfv 6463 (class class class)co 7313 ℂcc 10939 0cc0 10941 1c1 10942 · cmul 10946 ℕcn 12043 ℕ0cn0 12303 ℤ≥cuz 12652 ...cfz 13309 seqcseq 13791 !cfa 14057 ∏cprod 15684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-inf2 9467 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-pre-sup 11019 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-int 4891 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-sup 9269 df-oi 9337 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-n0 12304 df-z 12390 df-uz 12653 df-rp 12801 df-fz 13310 df-fzo 13453 df-seq 13792 df-exp 13853 df-fac 14058 df-hash 14115 df-cj 14879 df-re 14880 df-im 14881 df-sqrt 15015 df-abs 15016 df-clim 15266 df-prod 15685 |
This theorem is referenced by: risefacfac 15814 fallfacval4 15822 prmolefac 16814 gausslemma2dlem1 26585 gausslemma2dlem6 26591 bcprod 33808 etransclem41 44060 |
Copyright terms: Public domain | W3C validator |