![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > risefacp1 | Structured version Visualization version GIF version |
Description: The value of the rising factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
risefacp1 | โข ((๐ด โ โ โง ๐ โ โ0) โ (๐ด RiseFac (๐ + 1)) = ((๐ด RiseFac ๐) ยท (๐ด + ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12428 | . . . . . . 7 โข (๐ โ โ0 โ ๐ โ โ) | |
2 | 1 | adantl 483 | . . . . . 6 โข ((๐ด โ โ โง ๐ โ โ0) โ ๐ โ โ) |
3 | 1cnd 11155 | . . . . . 6 โข ((๐ด โ โ โง ๐ โ โ0) โ 1 โ โ) | |
4 | 2, 3 | pncand 11518 | . . . . 5 โข ((๐ด โ โ โง ๐ โ โ0) โ ((๐ + 1) โ 1) = ๐) |
5 | 4 | oveq2d 7374 | . . . 4 โข ((๐ด โ โ โง ๐ โ โ0) โ (0...((๐ + 1) โ 1)) = (0...๐)) |
6 | 5 | prodeq1d 15809 | . . 3 โข ((๐ด โ โ โง ๐ โ โ0) โ โ๐ โ (0...((๐ + 1) โ 1))(๐ด + ๐) = โ๐ โ (0...๐)(๐ด + ๐)) |
7 | elnn0uz 12813 | . . . . . 6 โข (๐ โ โ0 โ ๐ โ (โคโฅโ0)) | |
8 | 7 | biimpi 215 | . . . . 5 โข (๐ โ โ0 โ ๐ โ (โคโฅโ0)) |
9 | 8 | adantl 483 | . . . 4 โข ((๐ด โ โ โง ๐ โ โ0) โ ๐ โ (โคโฅโ0)) |
10 | elfznn0 13540 | . . . . . . 7 โข (๐ โ (0...๐) โ ๐ โ โ0) | |
11 | 10 | nn0cnd 12480 | . . . . . 6 โข (๐ โ (0...๐) โ ๐ โ โ) |
12 | addcl 11138 | . . . . . 6 โข ((๐ด โ โ โง ๐ โ โ) โ (๐ด + ๐) โ โ) | |
13 | 11, 12 | sylan2 594 | . . . . 5 โข ((๐ด โ โ โง ๐ โ (0...๐)) โ (๐ด + ๐) โ โ) |
14 | 13 | adantlr 714 | . . . 4 โข (((๐ด โ โ โง ๐ โ โ0) โง ๐ โ (0...๐)) โ (๐ด + ๐) โ โ) |
15 | oveq2 7366 | . . . 4 โข (๐ = ๐ โ (๐ด + ๐) = (๐ด + ๐)) | |
16 | 9, 14, 15 | fprodm1 15855 | . . 3 โข ((๐ด โ โ โง ๐ โ โ0) โ โ๐ โ (0...๐)(๐ด + ๐) = (โ๐ โ (0...(๐ โ 1))(๐ด + ๐) ยท (๐ด + ๐))) |
17 | 6, 16 | eqtrd 2773 | . 2 โข ((๐ด โ โ โง ๐ โ โ0) โ โ๐ โ (0...((๐ + 1) โ 1))(๐ด + ๐) = (โ๐ โ (0...(๐ โ 1))(๐ด + ๐) ยท (๐ด + ๐))) |
18 | peano2nn0 12458 | . . 3 โข (๐ โ โ0 โ (๐ + 1) โ โ0) | |
19 | risefacval 15896 | . . 3 โข ((๐ด โ โ โง (๐ + 1) โ โ0) โ (๐ด RiseFac (๐ + 1)) = โ๐ โ (0...((๐ + 1) โ 1))(๐ด + ๐)) | |
20 | 18, 19 | sylan2 594 | . 2 โข ((๐ด โ โ โง ๐ โ โ0) โ (๐ด RiseFac (๐ + 1)) = โ๐ โ (0...((๐ + 1) โ 1))(๐ด + ๐)) |
21 | risefacval 15896 | . . 3 โข ((๐ด โ โ โง ๐ โ โ0) โ (๐ด RiseFac ๐) = โ๐ โ (0...(๐ โ 1))(๐ด + ๐)) | |
22 | 21 | oveq1d 7373 | . 2 โข ((๐ด โ โ โง ๐ โ โ0) โ ((๐ด RiseFac ๐) ยท (๐ด + ๐)) = (โ๐ โ (0...(๐ โ 1))(๐ด + ๐) ยท (๐ด + ๐))) |
23 | 17, 20, 22 | 3eqtr4d 2783 | 1 โข ((๐ด โ โ โง ๐ โ โ0) โ (๐ด RiseFac (๐ + 1)) = ((๐ด RiseFac ๐) ยท (๐ด + ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 โcfv 6497 (class class class)co 7358 โcc 11054 0cc0 11056 1c1 11057 + caddc 11059 ยท cmul 11061 โ cmin 11390 โ0cn0 12418 โคโฅcuz 12768 ...cfz 13430 โcprod 15793 RiseFac crisefac 15893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-fz 13431 df-fzo 13574 df-seq 13913 df-exp 13974 df-hash 14237 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-prod 15794 df-risefac 15894 |
This theorem is referenced by: risefacp1d 15919 risefac1 15921 |
Copyright terms: Public domain | W3C validator |