![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > risefacp1 | Structured version Visualization version GIF version |
Description: The value of the rising factorial at a successor. (Contributed by Scott Fenton, 5-Jan-2018.) |
Ref | Expression |
---|---|
risefacp1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 11653 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 1 | adantl 475 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ) |
3 | 1cnd 10371 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℂ) | |
4 | 2, 3 | pncand 10735 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝑁 + 1) − 1) = 𝑁) |
5 | 4 | oveq2d 6938 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
6 | 5 | prodeq1d 15054 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 + 𝑘) = ∏𝑘 ∈ (0...𝑁)(𝐴 + 𝑘)) |
7 | elnn0uz 12031 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 ↔ 𝑁 ∈ (ℤ≥‘0)) | |
8 | 7 | biimpi 208 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (ℤ≥‘0)) |
9 | 8 | adantl 475 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘0)) |
10 | elfznn0 12751 | . . . . . . 7 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
11 | 10 | nn0cnd 11704 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℂ) |
12 | addcl 10354 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (𝐴 + 𝑘) ∈ ℂ) | |
13 | 11, 12 | sylan2 586 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 + 𝑘) ∈ ℂ) |
14 | 13 | adantlr 705 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴 + 𝑘) ∈ ℂ) |
15 | oveq2 6930 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐴 + 𝑘) = (𝐴 + 𝑁)) | |
16 | 9, 14, 15 | fprodm1 15100 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...𝑁)(𝐴 + 𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) · (𝐴 + 𝑁))) |
17 | 6, 16 | eqtrd 2814 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 + 𝑘) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) · (𝐴 + 𝑁))) |
18 | peano2nn0 11684 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
19 | risefacval 15141 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑁 + 1) ∈ ℕ0) → (𝐴 RiseFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 + 𝑘)) | |
20 | 18, 19 | sylan2 586 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac (𝑁 + 1)) = ∏𝑘 ∈ (0...((𝑁 + 1) − 1))(𝐴 + 𝑘)) |
21 | risefacval 15141 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac 𝑁) = ∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘)) | |
22 | 21 | oveq1d 6937 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁)) = (∏𝑘 ∈ (0...(𝑁 − 1))(𝐴 + 𝑘) · (𝐴 + 𝑁))) |
23 | 17, 20, 22 | 3eqtr4d 2824 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴 RiseFac (𝑁 + 1)) = ((𝐴 RiseFac 𝑁) · (𝐴 + 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 ℂcc 10270 0cc0 10272 1c1 10273 + caddc 10275 · cmul 10277 − cmin 10606 ℕ0cn0 11642 ℤ≥cuz 11992 ...cfz 12643 ∏cprod 15038 RiseFac crisefac 15138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-prod 15039 df-risefac 15139 |
This theorem is referenced by: risefacp1d 15164 risefac1 15166 |
Copyright terms: Public domain | W3C validator |