Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcprod Structured version   Visualization version   GIF version

Theorem bcprod 33267
Description: A product identity for binomial coefficents. (Contributed by Scott Fenton, 23-Jun-2020.)
Assertion
Ref Expression
bcprod (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Distinct variable group:   𝑘,𝑁

Proof of Theorem bcprod
Dummy variables 𝑛 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7171 . . . . . . 7 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
2 1m1e0 11781 . . . . . . 7 (1 − 1) = 0
31, 2eqtrdi 2789 . . . . . 6 (𝑚 = 1 → (𝑚 − 1) = 0)
43oveq2d 7180 . . . . 5 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
5 fz10 13012 . . . . 5 (1...0) = ∅
64, 5eqtrdi 2789 . . . 4 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
73oveq1d 7179 . . . . 5 (𝑚 = 1 → ((𝑚 − 1)C𝑘) = (0C𝑘))
87adantr 484 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (0C𝑘))
96, 8prodeq12dv 15365 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ ∅ (0C𝑘))
10 oveq2 7172 . . . . . 6 (𝑚 = 1 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 1))
1110oveq2d 7180 . . . . 5 (𝑚 = 1 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
1211adantr 484 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
136, 12prodeq12dv 15365 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)))
149, 13eqeq12d 2754 . 2 (𝑚 = 1 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))))
15 oveq1 7171 . . . . 5 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
1615oveq2d 7180 . . . 4 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
1715oveq1d 7179 . . . . 5 (𝑚 = 𝑛 → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1817adantr 484 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1916, 18prodeq12dv 15365 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘))
20 oveq2 7172 . . . . . 6 (𝑚 = 𝑛 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑛))
2120oveq2d 7180 . . . . 5 (𝑚 = 𝑛 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2221adantr 484 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2316, 22prodeq12dv 15365 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
2419, 23eqeq12d 2754 . 2 (𝑚 = 𝑛 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))))
25 oveq1 7171 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
2625oveq2d 7180 . . . 4 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
2725oveq1d 7179 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2827adantr 484 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2926, 28prodeq12dv 15365 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘))
30 oveq2 7172 . . . . . 6 (𝑚 = (𝑛 + 1) → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − (𝑛 + 1)))
3130oveq2d 7180 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3231adantr 484 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3326, 32prodeq12dv 15365 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3429, 33eqeq12d 2754 . 2 (𝑚 = (𝑛 + 1) → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
35 oveq1 7171 . . . . 5 (𝑚 = 𝑁 → (𝑚 − 1) = (𝑁 − 1))
3635oveq2d 7180 . . . 4 (𝑚 = 𝑁 → (1...(𝑚 − 1)) = (1...(𝑁 − 1)))
3735oveq1d 7179 . . . . 5 (𝑚 = 𝑁 → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3837adantr 484 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3936, 38prodeq12dv 15365 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘))
40 oveq2 7172 . . . . . 6 (𝑚 = 𝑁 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑁))
4140oveq2d 7180 . . . . 5 (𝑚 = 𝑁 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4241adantr 484 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4336, 42prodeq12dv 15365 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
4439, 43eqeq12d 2754 . 2 (𝑚 = 𝑁 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))))
45 prod0 15382 . . 3 𝑘 ∈ ∅ (0C𝑘) = 1
46 prod0 15382 . . 3 𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)) = 1
4745, 46eqtr4i 2764 . 2 𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))
48 simpr 488 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
4948oveq1d 7179 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
50 nncn 11717 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
51 1cnd 10707 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℂ)
5250, 51pncand 11069 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
5352oveq2d 7180 . . . . . . 7 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
5452oveq1d 7179 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5554adantr 484 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...((𝑛 + 1) − 1))) → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5653, 55prodeq12dv 15365 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘))
57 elnnuz 12357 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
5857biimpi 219 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
59 nnnn0 11976 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
60 elfzelz 12991 . . . . . . . . 9 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
61 bccl 13767 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
6259, 60, 61syl2an 599 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℕ0)
6362nn0cnd 12031 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℂ)
64 oveq2 7172 . . . . . . 7 (𝑘 = 𝑛 → (𝑛C𝑘) = (𝑛C𝑛))
6558, 63, 64fprodm1 15406 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)))
66 bcnn 13757 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛C𝑛) = 1)
6759, 66syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛C𝑛) = 1)
6867oveq2d 7180 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1))
69 fzfid 13425 . . . . . . . . 9 (𝑛 ∈ ℕ → (1...(𝑛 − 1)) ∈ Fin)
70 elfzelz 12991 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℤ)
7159, 70, 61syl2an 599 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℕ0)
7271nn0cnd 12031 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℂ)
7369, 72fprodcl 15391 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) ∈ ℂ)
7473mulid1d 10729 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘))
75 fz1ssfz0 13087 . . . . . . . . . . 11 (1...(𝑛 − 1)) ⊆ (0...(𝑛 − 1))
7675sseli 3871 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ (0...(𝑛 − 1)))
77 bcm1nt 33266 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7876, 77sylan2 596 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7978prodeq2dv 15362 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
80 nnm1nn0 12010 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
81 bccl 13767 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8280, 70, 81syl2an 599 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8382nn0cnd 12031 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℂ)
8450adantr 484 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℂ)
85 elfznn 13020 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℕ)
8685adantl 485 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℕ)
8786nnred 11724 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℝ)
8880adantr 484 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℕ0)
8988nn0red 12030 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℝ)
90 nnre 11716 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9190adantr 484 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℝ)
92 elfzle2 12995 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ≤ (𝑛 − 1))
9392adantl 485 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≤ (𝑛 − 1))
9491ltm1d 11643 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) < 𝑛)
9587, 89, 91, 93, 94lelttrd 10869 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 < 𝑛)
96 simpl 486 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℕ)
97 nnsub 11753 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9886, 96, 97syl2anc 587 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9995, 98mpbid 235 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℕ)
10099nncnd 11725 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℂ)
10199nnne0d 11759 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ≠ 0)
10284, 100, 101divcld 11487 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 / (𝑛𝑘)) ∈ ℂ)
10369, 83, 102fprodmul 15399 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))))
10469, 84, 100, 101fproddiv 15400 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
105 fzfi 13424 . . . . . . . . . . . . 13 (1...(𝑛 − 1)) ∈ Fin
106 fprodconst 15417 . . . . . . . . . . . . 13 (((1...(𝑛 − 1)) ∈ Fin ∧ 𝑛 ∈ ℂ) → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
107105, 50, 106sylancr 590 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
108 hashfz1 13791 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ0 → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
10980, 108syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
110109oveq2d 7180 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑(♯‘(1...(𝑛 − 1)))) = (𝑛↑(𝑛 − 1)))
111107, 110eqtr2d 2774 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑛)
112 fprodfac 15412 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
11380, 112syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
114 nnz 12078 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
115 1zzd 12087 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ∈ ℤ)
11680nn0zd 12159 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℤ)
117 elfznn 13020 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...(𝑛 − 1)) → 𝑗 ∈ ℕ)
118117adantl 485 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℕ)
119118nncnd 11725 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℂ)
120 id 22 . . . . . . . . . . . . 13 (𝑗 = (𝑛𝑘) → 𝑗 = (𝑛𝑘))
121114, 115, 116, 119, 120fprodrev 15416 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑗 ∈ (1...(𝑛 − 1))𝑗 = ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘))
12250, 51nncand 11073 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 − (𝑛 − 1)) = 1)
123122oveq1d 7179 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 − (𝑛 − 1))...(𝑛 − 1)) = (1...(𝑛 − 1)))
124123prodeq1d 15360 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
125113, 121, 1243eqtrd 2777 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
126111, 125oveq12d 7182 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
127104, 126eqtr4d 2776 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))))
128127oveq2d 7180 . . . . . . . 8 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
12979, 103, 1283eqtrd 2777 . . . . . . 7 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13068, 74, 1293eqtrd 2777 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13156, 65, 1303eqtrd 2777 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
132131adantr 484 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13353prodeq1d 15360 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
134 elfznn 13020 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
135134adantl 485 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
136135nncnd 11725 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℂ)
137135nnne0d 11759 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ≠ 0)
138 2nn 11782 . . . . . . . . . . . 12 2 ∈ ℕ
139138a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 2 ∈ ℕ)
140139, 135nnmulcld 11762 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℕ)
141140nnzd 12160 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℤ)
142 peano2nn 11721 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
143142adantr 484 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℕ)
144143nnzd 12160 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℤ)
145141, 144zsubcld 12166 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((2 · 𝑘) − (𝑛 + 1)) ∈ ℤ)
146136, 137, 145expclzd 13600 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) ∈ ℂ)
147 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
148 oveq2 7172 . . . . . . . . 9 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
149148oveq1d 7179 . . . . . . . 8 (𝑘 = 𝑛 → ((2 · 𝑘) − (𝑛 + 1)) = ((2 · 𝑛) − (𝑛 + 1)))
150147, 149oveq12d 7182 . . . . . . 7 (𝑘 = 𝑛 → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (𝑛↑((2 · 𝑛) − (𝑛 + 1))))
15158, 146, 150fprodm1 15406 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))))
15286nncnd 11725 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℂ)
15386nnne0d 11759 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≠ 0)
154138a1i 11 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 2 ∈ ℕ)
155154, 86nnmulcld 11762 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℕ)
156155nnzd 12160 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℤ)
157114adantr 484 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℤ)
158156, 157zsubcld 12166 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((2 · 𝑘) − 𝑛) ∈ ℤ)
159152, 153, 158expclzd 13600 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
16069, 159, 152, 153fproddiv 15400 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
161155nncnd 11725 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℂ)
162 1cnd 10707 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 1 ∈ ℂ)
163161, 84, 162subsub4d 11099 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (((2 · 𝑘) − 𝑛) − 1) = ((2 · 𝑘) − (𝑛 + 1)))
164163oveq2d 7180 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
165152, 153, 158expm1d 13605 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
166164, 165eqtr3d 2775 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
167166prodeq2dv 15362 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
168 fprodfac 15412 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
16980, 168syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
170169oveq2d 7180 . . . . . . . . 9 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
171160, 167, 1703eqtr4d 2783 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))))
172138a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℕ)
173 id 22 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
174172, 173nnmulcld 11762 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
175174nncnd 11725 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
176175, 50, 51subsub4d 11099 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = ((2 · 𝑛) − (𝑛 + 1)))
177502timesd 11952 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) = (𝑛 + 𝑛))
17850, 50, 177mvrladdd 11124 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2 · 𝑛) − 𝑛) = 𝑛)
179178oveq1d 7179 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = (𝑛 − 1))
180176, 179eqtr3d 2775 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) − (𝑛 + 1)) = (𝑛 − 1))
181180oveq2d 7180 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑((2 · 𝑛) − (𝑛 + 1))) = (𝑛↑(𝑛 − 1)))
182171, 181oveq12d 7182 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))))
18369, 159fprodcl 15391 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
184 faccl 13728 . . . . . . . . . 10 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) ∈ ℕ)
18580, 184syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℕ)
186185nncnd 11725 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℂ)
18750, 80expcld 13595 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) ∈ ℂ)
188185nnne0d 11759 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ≠ 0)
189183, 186, 187, 188div32d 11510 . . . . . . 7 (𝑛 ∈ ℕ → ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
190182, 189eqtrd 2773 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
191133, 151, 1903eqtrd 2777 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
192191adantr 484 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
19349, 132, 1923eqtr4d 2783 . . 3 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
194193ex 416 . 2 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
19514, 24, 34, 44, 47, 194nnind 11727 1 (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  c0 4209   class class class wbr 5027  cfv 6333  (class class class)co 7164  Fincfn 8548  cc 10606  cr 10607  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613   < clt 10746  cle 10747  cmin 10941   / cdiv 11368  cn 11709  2c2 11764  0cn0 11969  cz 12055  cuz 12317  ...cfz 12974  cexp 13514  !cfa 13718  Ccbc 13747  chash 13775  cprod 15344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-sup 8972  df-oi 9040  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-rp 12466  df-fz 12975  df-fzo 13118  df-seq 13454  df-exp 13515  df-fac 13719  df-bc 13748  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-prod 15345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator