Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcprod Structured version   Visualization version   GIF version

Theorem bcprod 32222
Description: A product identity for binomial coefficents. (Contributed by Scott Fenton, 23-Jun-2020.)
Assertion
Ref Expression
bcprod (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Distinct variable group:   𝑘,𝑁

Proof of Theorem bcprod
Dummy variables 𝑛 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6931 . . . . . . 7 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
2 1m1e0 11451 . . . . . . 7 (1 − 1) = 0
31, 2syl6eq 2830 . . . . . 6 (𝑚 = 1 → (𝑚 − 1) = 0)
43oveq2d 6940 . . . . 5 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
5 fz10 12683 . . . . 5 (1...0) = ∅
64, 5syl6eq 2830 . . . 4 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
73oveq1d 6939 . . . . 5 (𝑚 = 1 → ((𝑚 − 1)C𝑘) = (0C𝑘))
87adantr 474 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (0C𝑘))
96, 8prodeq12dv 15063 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ ∅ (0C𝑘))
10 oveq2 6932 . . . . . 6 (𝑚 = 1 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 1))
1110oveq2d 6940 . . . . 5 (𝑚 = 1 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
1211adantr 474 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
136, 12prodeq12dv 15063 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)))
149, 13eqeq12d 2793 . 2 (𝑚 = 1 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))))
15 oveq1 6931 . . . . 5 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
1615oveq2d 6940 . . . 4 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
1715oveq1d 6939 . . . . 5 (𝑚 = 𝑛 → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1817adantr 474 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1916, 18prodeq12dv 15063 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘))
20 oveq2 6932 . . . . . 6 (𝑚 = 𝑛 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑛))
2120oveq2d 6940 . . . . 5 (𝑚 = 𝑛 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2221adantr 474 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2316, 22prodeq12dv 15063 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
2419, 23eqeq12d 2793 . 2 (𝑚 = 𝑛 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))))
25 oveq1 6931 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
2625oveq2d 6940 . . . 4 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
2725oveq1d 6939 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2827adantr 474 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2926, 28prodeq12dv 15063 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘))
30 oveq2 6932 . . . . . 6 (𝑚 = (𝑛 + 1) → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − (𝑛 + 1)))
3130oveq2d 6940 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3231adantr 474 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3326, 32prodeq12dv 15063 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3429, 33eqeq12d 2793 . 2 (𝑚 = (𝑛 + 1) → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
35 oveq1 6931 . . . . 5 (𝑚 = 𝑁 → (𝑚 − 1) = (𝑁 − 1))
3635oveq2d 6940 . . . 4 (𝑚 = 𝑁 → (1...(𝑚 − 1)) = (1...(𝑁 − 1)))
3735oveq1d 6939 . . . . 5 (𝑚 = 𝑁 → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3837adantr 474 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3936, 38prodeq12dv 15063 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘))
40 oveq2 6932 . . . . . 6 (𝑚 = 𝑁 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑁))
4140oveq2d 6940 . . . . 5 (𝑚 = 𝑁 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4241adantr 474 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4336, 42prodeq12dv 15063 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
4439, 43eqeq12d 2793 . 2 (𝑚 = 𝑁 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))))
45 prod0 15080 . . 3 𝑘 ∈ ∅ (0C𝑘) = 1
46 prod0 15080 . . 3 𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)) = 1
4745, 46eqtr4i 2805 . 2 𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))
48 simpr 479 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
4948oveq1d 6939 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
50 nncn 11387 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
51 1cnd 10373 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℂ)
5250, 51pncand 10737 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
5352oveq2d 6940 . . . . . . 7 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
5452oveq1d 6939 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5554adantr 474 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...((𝑛 + 1) − 1))) → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5653, 55prodeq12dv 15063 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘))
57 elnnuz 12034 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
5857biimpi 208 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
59 nnnn0 11654 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
60 elfzelz 12663 . . . . . . . . 9 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
61 bccl 13431 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
6259, 60, 61syl2an 589 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℕ0)
6362nn0cnd 11708 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℂ)
64 oveq2 6932 . . . . . . 7 (𝑘 = 𝑛 → (𝑛C𝑘) = (𝑛C𝑛))
6558, 63, 64fprodm1 15104 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)))
66 bcnn 13421 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛C𝑛) = 1)
6759, 66syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛C𝑛) = 1)
6867oveq2d 6940 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1))
69 fzfid 13095 . . . . . . . . 9 (𝑛 ∈ ℕ → (1...(𝑛 − 1)) ∈ Fin)
70 elfzelz 12663 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℤ)
7159, 70, 61syl2an 589 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℕ0)
7271nn0cnd 11708 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℂ)
7369, 72fprodcl 15089 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) ∈ ℂ)
7473mulid1d 10396 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘))
75 fz1ssfz0 12758 . . . . . . . . . . 11 (1...(𝑛 − 1)) ⊆ (0...(𝑛 − 1))
7675sseli 3817 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ (0...(𝑛 − 1)))
77 bcm1nt 32221 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7876, 77sylan2 586 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7978prodeq2dv 15060 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
80 nnm1nn0 11689 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
81 bccl 13431 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8280, 70, 81syl2an 589 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8382nn0cnd 11708 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℂ)
8450adantr 474 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℂ)
85 elfznn 12691 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℕ)
8685adantl 475 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℕ)
8786nnred 11395 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℝ)
8880adantr 474 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℕ0)
8988nn0red 11707 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℝ)
90 nnre 11386 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9190adantr 474 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℝ)
92 elfzle2 12666 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ≤ (𝑛 − 1))
9392adantl 475 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≤ (𝑛 − 1))
9491ltm1d 11312 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) < 𝑛)
9587, 89, 91, 93, 94lelttrd 10536 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 < 𝑛)
96 simpl 476 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℕ)
97 nnsub 11423 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9886, 96, 97syl2anc 579 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9995, 98mpbid 224 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℕ)
10099nncnd 11396 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℂ)
10199nnne0d 11429 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ≠ 0)
10284, 100, 101divcld 11153 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 / (𝑛𝑘)) ∈ ℂ)
10369, 83, 102fprodmul 15097 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))))
10469, 84, 100, 101fproddiv 15098 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
105 fzfi 13094 . . . . . . . . . . . . 13 (1...(𝑛 − 1)) ∈ Fin
106 fprodconst 15115 . . . . . . . . . . . . 13 (((1...(𝑛 − 1)) ∈ Fin ∧ 𝑛 ∈ ℂ) → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
107105, 50, 106sylancr 581 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
108 hashfz1 13455 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ0 → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
10980, 108syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
110109oveq2d 6940 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑(♯‘(1...(𝑛 − 1)))) = (𝑛↑(𝑛 − 1)))
111107, 110eqtr2d 2815 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑛)
112 fprodfac 15110 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
11380, 112syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
114 nnz 11755 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
115 1zzd 11764 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ∈ ℤ)
11680nn0zd 11836 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℤ)
117 elfznn 12691 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...(𝑛 − 1)) → 𝑗 ∈ ℕ)
118117adantl 475 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℕ)
119118nncnd 11396 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℂ)
120 id 22 . . . . . . . . . . . . 13 (𝑗 = (𝑛𝑘) → 𝑗 = (𝑛𝑘))
121114, 115, 116, 119, 120fprodrev 15114 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑗 ∈ (1...(𝑛 − 1))𝑗 = ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘))
12250, 51nncand 10741 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 − (𝑛 − 1)) = 1)
123122oveq1d 6939 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 − (𝑛 − 1))...(𝑛 − 1)) = (1...(𝑛 − 1)))
124123prodeq1d 15058 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
125113, 121, 1243eqtrd 2818 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
126111, 125oveq12d 6942 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
127104, 126eqtr4d 2817 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))))
128127oveq2d 6940 . . . . . . . 8 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
12979, 103, 1283eqtrd 2818 . . . . . . 7 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13068, 74, 1293eqtrd 2818 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13156, 65, 1303eqtrd 2818 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
132131adantr 474 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13353prodeq1d 15058 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
134 elfznn 12691 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
135134adantl 475 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
136135nncnd 11396 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℂ)
137135nnne0d 11429 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ≠ 0)
138 2nn 11452 . . . . . . . . . . . 12 2 ∈ ℕ
139138a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 2 ∈ ℕ)
140139, 135nnmulcld 11432 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℕ)
141140nnzd 11837 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℤ)
142 peano2nn 11392 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
143142adantr 474 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℕ)
144143nnzd 11837 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℤ)
145141, 144zsubcld 11843 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((2 · 𝑘) − (𝑛 + 1)) ∈ ℤ)
146136, 137, 145expclzd 13336 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) ∈ ℂ)
147 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
148 oveq2 6932 . . . . . . . . 9 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
149148oveq1d 6939 . . . . . . . 8 (𝑘 = 𝑛 → ((2 · 𝑘) − (𝑛 + 1)) = ((2 · 𝑛) − (𝑛 + 1)))
150147, 149oveq12d 6942 . . . . . . 7 (𝑘 = 𝑛 → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (𝑛↑((2 · 𝑛) − (𝑛 + 1))))
15158, 146, 150fprodm1 15104 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))))
15286nncnd 11396 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℂ)
15386nnne0d 11429 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≠ 0)
154138a1i 11 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 2 ∈ ℕ)
155154, 86nnmulcld 11432 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℕ)
156155nnzd 11837 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℤ)
157114adantr 474 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℤ)
158156, 157zsubcld 11843 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((2 · 𝑘) − 𝑛) ∈ ℤ)
159152, 153, 158expclzd 13336 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
16069, 159, 152, 153fproddiv 15098 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
161155nncnd 11396 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℂ)
162 1cnd 10373 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 1 ∈ ℂ)
163161, 84, 162subsub4d 10767 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (((2 · 𝑘) − 𝑛) − 1) = ((2 · 𝑘) − (𝑛 + 1)))
164163oveq2d 6940 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
165152, 153, 158expm1d 13341 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
166164, 165eqtr3d 2816 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
167166prodeq2dv 15060 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
168 fprodfac 15110 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
16980, 168syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
170169oveq2d 6940 . . . . . . . . 9 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
171160, 167, 1703eqtr4d 2824 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))))
172138a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℕ)
173 id 22 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
174172, 173nnmulcld 11432 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
175174nncnd 11396 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
176175, 50, 51subsub4d 10767 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = ((2 · 𝑛) − (𝑛 + 1)))
177502timesd 11629 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) = (𝑛 + 𝑛))
17850, 50, 177mvrladdd 10790 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2 · 𝑛) − 𝑛) = 𝑛)
179178oveq1d 6939 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = (𝑛 − 1))
180176, 179eqtr3d 2816 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) − (𝑛 + 1)) = (𝑛 − 1))
181180oveq2d 6940 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑((2 · 𝑛) − (𝑛 + 1))) = (𝑛↑(𝑛 − 1)))
182171, 181oveq12d 6942 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))))
18369, 159fprodcl 15089 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
184 faccl 13392 . . . . . . . . . 10 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) ∈ ℕ)
18580, 184syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℕ)
186185nncnd 11396 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℂ)
18750, 80expcld 13331 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) ∈ ℂ)
188185nnne0d 11429 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ≠ 0)
189183, 186, 187, 188div32d 11176 . . . . . . 7 (𝑛 ∈ ℕ → ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
190182, 189eqtrd 2814 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
191133, 151, 1903eqtrd 2818 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
192191adantr 474 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
19349, 132, 1923eqtr4d 2824 . . 3 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
194193ex 403 . 2 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
19514, 24, 34, 44, 47, 194nnind 11398 1 (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  c0 4141   class class class wbr 4888  cfv 6137  (class class class)co 6924  Fincfn 8243  cc 10272  cr 10273  0cc0 10274  1c1 10275   + caddc 10277   · cmul 10279   < clt 10413  cle 10414  cmin 10608   / cdiv 11034  cn 11378  2c2 11434  0cn0 11646  cz 11732  cuz 11996  ...cfz 12647  cexp 13182  !cfa 13382  Ccbc 13411  chash 13439  cprod 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-sup 8638  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-rp 12142  df-fz 12648  df-fzo 12789  df-seq 13124  df-exp 13183  df-fac 13383  df-bc 13412  df-hash 13440  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-clim 14631  df-prod 15043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator