Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcprod Structured version   Visualization version   GIF version

Theorem bcprod 32970
Description: A product identity for binomial coefficents. (Contributed by Scott Fenton, 23-Jun-2020.)
Assertion
Ref Expression
bcprod (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Distinct variable group:   𝑘,𝑁

Proof of Theorem bcprod
Dummy variables 𝑛 𝑚 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7162 . . . . . . 7 (𝑚 = 1 → (𝑚 − 1) = (1 − 1))
2 1m1e0 11708 . . . . . . 7 (1 − 1) = 0
31, 2syl6eq 2872 . . . . . 6 (𝑚 = 1 → (𝑚 − 1) = 0)
43oveq2d 7171 . . . . 5 (𝑚 = 1 → (1...(𝑚 − 1)) = (1...0))
5 fz10 12927 . . . . 5 (1...0) = ∅
64, 5syl6eq 2872 . . . 4 (𝑚 = 1 → (1...(𝑚 − 1)) = ∅)
73oveq1d 7170 . . . . 5 (𝑚 = 1 → ((𝑚 − 1)C𝑘) = (0C𝑘))
87adantr 483 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (0C𝑘))
96, 8prodeq12dv 15279 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ ∅ (0C𝑘))
10 oveq2 7163 . . . . . 6 (𝑚 = 1 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 1))
1110oveq2d 7171 . . . . 5 (𝑚 = 1 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
1211adantr 483 . . . 4 ((𝑚 = 1 ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 1)))
136, 12prodeq12dv 15279 . . 3 (𝑚 = 1 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)))
149, 13eqeq12d 2837 . 2 (𝑚 = 1 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))))
15 oveq1 7162 . . . . 5 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
1615oveq2d 7171 . . . 4 (𝑚 = 𝑛 → (1...(𝑚 − 1)) = (1...(𝑛 − 1)))
1715oveq1d 7170 . . . . 5 (𝑚 = 𝑛 → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1817adantr 483 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑛 − 1)C𝑘))
1916, 18prodeq12dv 15279 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘))
20 oveq2 7163 . . . . . 6 (𝑚 = 𝑛 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑛))
2120oveq2d 7171 . . . . 5 (𝑚 = 𝑛 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2221adantr 483 . . . 4 ((𝑚 = 𝑛𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑛)))
2316, 22prodeq12dv 15279 . . 3 (𝑚 = 𝑛 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
2419, 23eqeq12d 2837 . 2 (𝑚 = 𝑛 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))))
25 oveq1 7162 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑚 − 1) = ((𝑛 + 1) − 1))
2625oveq2d 7171 . . . 4 (𝑚 = (𝑛 + 1) → (1...(𝑚 − 1)) = (1...((𝑛 + 1) − 1)))
2725oveq1d 7170 . . . . 5 (𝑚 = (𝑛 + 1) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2827adantr 483 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = (((𝑛 + 1) − 1)C𝑘))
2926, 28prodeq12dv 15279 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘))
30 oveq2 7163 . . . . . 6 (𝑚 = (𝑛 + 1) → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − (𝑛 + 1)))
3130oveq2d 7171 . . . . 5 (𝑚 = (𝑛 + 1) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3231adantr 483 . . . 4 ((𝑚 = (𝑛 + 1) ∧ 𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3326, 32prodeq12dv 15279 . . 3 (𝑚 = (𝑛 + 1) → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
3429, 33eqeq12d 2837 . 2 (𝑚 = (𝑛 + 1) → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
35 oveq1 7162 . . . . 5 (𝑚 = 𝑁 → (𝑚 − 1) = (𝑁 − 1))
3635oveq2d 7171 . . . 4 (𝑚 = 𝑁 → (1...(𝑚 − 1)) = (1...(𝑁 − 1)))
3735oveq1d 7170 . . . . 5 (𝑚 = 𝑁 → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3837adantr 483 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → ((𝑚 − 1)C𝑘) = ((𝑁 − 1)C𝑘))
3936, 38prodeq12dv 15279 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘))
40 oveq2 7163 . . . . . 6 (𝑚 = 𝑁 → ((2 · 𝑘) − 𝑚) = ((2 · 𝑘) − 𝑁))
4140oveq2d 7171 . . . . 5 (𝑚 = 𝑁 → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4241adantr 483 . . . 4 ((𝑚 = 𝑁𝑘 ∈ (1...(𝑚 − 1))) → (𝑘↑((2 · 𝑘) − 𝑚)) = (𝑘↑((2 · 𝑘) − 𝑁)))
4336, 42prodeq12dv 15279 . . 3 (𝑚 = 𝑁 → ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
4439, 43eqeq12d 2837 . 2 (𝑚 = 𝑁 → (∏𝑘 ∈ (1...(𝑚 − 1))((𝑚 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑚 − 1))(𝑘↑((2 · 𝑘) − 𝑚)) ↔ ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))))
45 prod0 15296 . . 3 𝑘 ∈ ∅ (0C𝑘) = 1
46 prod0 15296 . . 3 𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1)) = 1
4745, 46eqtr4i 2847 . 2 𝑘 ∈ ∅ (0C𝑘) = ∏𝑘 ∈ ∅ (𝑘↑((2 · 𝑘) − 1))
48 simpr 487 . . . . 5 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)))
4948oveq1d 7170 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
50 nncn 11645 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
51 1cnd 10635 . . . . . . . . 9 (𝑛 ∈ ℕ → 1 ∈ ℂ)
5250, 51pncand 10997 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 + 1) − 1) = 𝑛)
5352oveq2d 7171 . . . . . . 7 (𝑛 ∈ ℕ → (1...((𝑛 + 1) − 1)) = (1...𝑛))
5452oveq1d 7170 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5554adantr 483 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...((𝑛 + 1) − 1))) → (((𝑛 + 1) − 1)C𝑘) = (𝑛C𝑘))
5653, 55prodeq12dv 15279 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘))
57 elnnuz 12281 . . . . . . . 8 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
5857biimpi 218 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
59 nnnn0 11903 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
60 elfzelz 12907 . . . . . . . . 9 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℤ)
61 bccl 13681 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑘 ∈ ℤ) → (𝑛C𝑘) ∈ ℕ0)
6259, 60, 61syl2an 597 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℕ0)
6362nn0cnd 11956 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛C𝑘) ∈ ℂ)
64 oveq2 7163 . . . . . . 7 (𝑘 = 𝑛 → (𝑛C𝑘) = (𝑛C𝑛))
6558, 63, 64fprodm1 15320 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)))
66 bcnn 13671 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑛C𝑛) = 1)
6759, 66syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛C𝑛) = 1)
6867oveq2d 7171 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1))
69 fzfid 13340 . . . . . . . . 9 (𝑛 ∈ ℕ → (1...(𝑛 − 1)) ∈ Fin)
70 elfzelz 12907 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℤ)
7159, 70, 61syl2an 597 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℕ0)
7271nn0cnd 11956 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) ∈ ℂ)
7369, 72fprodcl 15305 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) ∈ ℂ)
7473mulid1d 10657 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · 1) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘))
75 fz1ssfz0 13002 . . . . . . . . . . 11 (1...(𝑛 − 1)) ⊆ (0...(𝑛 − 1))
7675sseli 3962 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ (0...(𝑛 − 1)))
77 bcm1nt 32969 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7876, 77sylan2 594 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛C𝑘) = (((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
7978prodeq2dv 15276 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))))
80 nnm1nn0 11937 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
81 bccl 13681 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℕ0𝑘 ∈ ℤ) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8280, 70, 81syl2an 597 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℕ0)
8382nn0cnd 11956 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((𝑛 − 1)C𝑘) ∈ ℂ)
8450adantr 483 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℂ)
85 elfznn 12935 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ∈ ℕ)
8685adantl 484 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℕ)
8786nnred 11652 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℝ)
8880adantr 483 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℕ0)
8988nn0red 11955 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) ∈ ℝ)
90 nnre 11644 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
9190adantr 483 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℝ)
92 elfzle2 12910 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...(𝑛 − 1)) → 𝑘 ≤ (𝑛 − 1))
9392adantl 484 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≤ (𝑛 − 1))
9491ltm1d 11571 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 − 1) < 𝑛)
9587, 89, 91, 93, 94lelttrd 10797 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 < 𝑛)
96 simpl 485 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℕ)
97 nnsub 11680 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9886, 96, 97syl2anc 586 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘 < 𝑛 ↔ (𝑛𝑘) ∈ ℕ))
9995, 98mpbid 234 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℕ)
10099nncnd 11653 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ∈ ℂ)
10199nnne0d 11686 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛𝑘) ≠ 0)
10284, 100, 101divcld 11415 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑛 / (𝑛𝑘)) ∈ ℂ)
10369, 83, 102fprodmul 15313 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(((𝑛 − 1)C𝑘) · (𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))))
10469, 84, 100, 101fproddiv 15314 . . . . . . . . . 10 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
105 fzfi 13339 . . . . . . . . . . . . 13 (1...(𝑛 − 1)) ∈ Fin
106 fprodconst 15331 . . . . . . . . . . . . 13 (((1...(𝑛 − 1)) ∈ Fin ∧ 𝑛 ∈ ℂ) → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
107105, 50, 106sylancr 589 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))𝑛 = (𝑛↑(♯‘(1...(𝑛 − 1)))))
108 hashfz1 13705 . . . . . . . . . . . . . 14 ((𝑛 − 1) ∈ ℕ0 → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
10980, 108syl 17 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (♯‘(1...(𝑛 − 1))) = (𝑛 − 1))
110109oveq2d 7171 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑(♯‘(1...(𝑛 − 1)))) = (𝑛↑(𝑛 − 1)))
111107, 110eqtr2d 2857 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑛)
112 fprodfac 15326 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
11380, 112syl 17 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑗 ∈ (1...(𝑛 − 1))𝑗)
114 nnz 12003 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
115 1zzd 12012 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 1 ∈ ℤ)
11680nn0zd 12084 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℤ)
117 elfznn 12935 . . . . . . . . . . . . . . 15 (𝑗 ∈ (1...(𝑛 − 1)) → 𝑗 ∈ ℕ)
118117adantl 484 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℕ)
119118nncnd 11653 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑛 − 1))) → 𝑗 ∈ ℂ)
120 id 22 . . . . . . . . . . . . 13 (𝑗 = (𝑛𝑘) → 𝑗 = (𝑛𝑘))
121114, 115, 116, 119, 120fprodrev 15330 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑗 ∈ (1...(𝑛 − 1))𝑗 = ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘))
12250, 51nncand 11001 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 − (𝑛 − 1)) = 1)
123122oveq1d 7170 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 − (𝑛 − 1))...(𝑛 − 1)) = (1...(𝑛 − 1)))
124123prodeq1d 15274 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ∏𝑘 ∈ ((𝑛 − (𝑛 − 1))...(𝑛 − 1))(𝑛𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
125113, 121, 1243eqtrd 2860 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘))
126111, 125oveq12d 7173 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))𝑛 / ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛𝑘)))
127104, 126eqtr4d 2859 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘)) = ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1))))
128127oveq2d 7171 . . . . . . . 8 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛 / (𝑛𝑘))) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
12979, 103, 1283eqtrd 2860 . . . . . . 7 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13068, 74, 1293eqtrd 2860 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑛C𝑘) · (𝑛C𝑛)) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13156, 65, 1303eqtrd 2860 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
132131adantr 483 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
13353prodeq1d 15274 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
134 elfznn 12935 . . . . . . . . . 10 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
135134adantl 484 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
136135nncnd 11653 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℂ)
137135nnne0d 11686 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ≠ 0)
138 2nn 11709 . . . . . . . . . . . 12 2 ∈ ℕ
139138a1i 11 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → 2 ∈ ℕ)
140139, 135nnmulcld 11689 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℕ)
141140nnzd 12085 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (2 · 𝑘) ∈ ℤ)
142 peano2nn 11649 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
143142adantr 483 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℕ)
144143nnzd 12085 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑛 + 1) ∈ ℤ)
145141, 144zsubcld 12091 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → ((2 · 𝑘) − (𝑛 + 1)) ∈ ℤ)
146136, 137, 145expclzd 13514 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...𝑛)) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) ∈ ℂ)
147 id 22 . . . . . . . 8 (𝑘 = 𝑛𝑘 = 𝑛)
148 oveq2 7163 . . . . . . . . 9 (𝑘 = 𝑛 → (2 · 𝑘) = (2 · 𝑛))
149148oveq1d 7170 . . . . . . . 8 (𝑘 = 𝑛 → ((2 · 𝑘) − (𝑛 + 1)) = ((2 · 𝑛) − (𝑛 + 1)))
150147, 149oveq12d 7173 . . . . . . 7 (𝑘 = 𝑛 → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (𝑛↑((2 · 𝑛) − (𝑛 + 1))))
15158, 146, 150fprodm1 15320 . . . . . 6 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...𝑛)(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))))
15286nncnd 11653 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ∈ ℂ)
15386nnne0d 11686 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑘 ≠ 0)
154138a1i 11 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 2 ∈ ℕ)
155154, 86nnmulcld 11689 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℕ)
156155nnzd 12085 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℤ)
157114adantr 483 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 𝑛 ∈ ℤ)
158156, 157zsubcld 12091 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → ((2 · 𝑘) − 𝑛) ∈ ℤ)
159152, 153, 158expclzd 13514 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
16069, 159, 152, 153fproddiv 15314 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
161155nncnd 11653 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (2 · 𝑘) ∈ ℂ)
162 1cnd 10635 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → 1 ∈ ℂ)
163161, 84, 162subsub4d 11027 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (((2 · 𝑘) − 𝑛) − 1) = ((2 · 𝑘) − (𝑛 + 1)))
164163oveq2d 7171 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = (𝑘↑((2 · 𝑘) − (𝑛 + 1))))
165152, 153, 158expm1d 13519 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑(((2 · 𝑘) − 𝑛) − 1)) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
166164, 165eqtr3d 2858 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑛 − 1))) → (𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
167166prodeq2dv 15276 . . . . . . . . 9 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = ∏𝑘 ∈ (1...(𝑛 − 1))((𝑘↑((2 · 𝑘) − 𝑛)) / 𝑘))
168 fprodfac 15326 . . . . . . . . . . 11 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
16980, 168syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) = ∏𝑘 ∈ (1...(𝑛 − 1))𝑘)
170169oveq2d 7171 . . . . . . . . 9 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / ∏𝑘 ∈ (1...(𝑛 − 1))𝑘))
171160, 167, 1703eqtr4d 2866 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))))
172138a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℕ)
173 id 22 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
174172, 173nnmulcld 11689 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
175174nncnd 11653 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
176175, 50, 51subsub4d 11027 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = ((2 · 𝑛) − (𝑛 + 1)))
177502timesd 11879 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) = (𝑛 + 𝑛))
17850, 50, 177mvrladdd 11052 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2 · 𝑛) − 𝑛) = 𝑛)
179178oveq1d 7170 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((2 · 𝑛) − 𝑛) − 1) = (𝑛 − 1))
180176, 179eqtr3d 2858 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) − (𝑛 + 1)) = (𝑛 − 1))
181180oveq2d 7171 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑((2 · 𝑛) − (𝑛 + 1))) = (𝑛↑(𝑛 − 1)))
182171, 181oveq12d 7173 . . . . . . 7 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))))
18369, 159fprodcl 15305 . . . . . . . 8 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) ∈ ℂ)
184 faccl 13642 . . . . . . . . . 10 ((𝑛 − 1) ∈ ℕ0 → (!‘(𝑛 − 1)) ∈ ℕ)
18580, 184syl 17 . . . . . . . . 9 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℕ)
186185nncnd 11653 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ∈ ℂ)
18750, 80expcld 13509 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛↑(𝑛 − 1)) ∈ ℂ)
188185nnne0d 11686 . . . . . . . 8 (𝑛 ∈ ℕ → (!‘(𝑛 − 1)) ≠ 0)
189183, 186, 187, 188div32d 11438 . . . . . . 7 (𝑛 ∈ ℕ → ((∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) / (!‘(𝑛 − 1))) · (𝑛↑(𝑛 − 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
190182, 189eqtrd 2856 . . . . . 6 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) · (𝑛↑((2 · 𝑛) − (𝑛 + 1)))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
191133, 151, 1903eqtrd 2860 . . . . 5 (𝑛 ∈ ℕ → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
192191adantr 483 . . . 4 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))) = (∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) · ((𝑛↑(𝑛 − 1)) / (!‘(𝑛 − 1)))))
19349, 132, 1923eqtr4d 2866 . . 3 ((𝑛 ∈ ℕ ∧ ∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛))) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1))))
194193ex 415 . 2 (𝑛 ∈ ℕ → (∏𝑘 ∈ (1...(𝑛 − 1))((𝑛 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑛 − 1))(𝑘↑((2 · 𝑘) − 𝑛)) → ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(((𝑛 + 1) − 1)C𝑘) = ∏𝑘 ∈ (1...((𝑛 + 1) − 1))(𝑘↑((2 · 𝑘) − (𝑛 + 1)))))
19514, 24, 34, 44, 47, 194nnind 11655 1 (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  c0 4290   class class class wbr 5065  cfv 6354  (class class class)co 7155  Fincfn 8508  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  ...cfz 12891  cexp 13428  !cfa 13632  Ccbc 13661  chash 13689  cprod 15258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-prod 15259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator